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What we read

Two completely different approaches to looking up things
1. DNS
2. DHTs (Chord)



DNS

Maps human readable names to IP addresses (and more)
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DNS

Goals

* Easy to manage with multiple parties
e Efficient (good performance, few resources)

Approach

* Distributed directory, hierarchical namespace
* Automated protocol to tie pieces together



DNS Namespace
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DNS Resolution

DNS protocol lets a host resolve any host name
(domain) to IP address

If unknown, can start with the root nameserver and
work down zones



DNS Resolution (2)
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lterative vs. Recursive Queries

Recursive query
* Nameserver resolves and returns final answer
* E.g., flits 2 local nameserver

Iterative (Authoritative) query
* Nameserver returns answer or who to contact for answer
* E.g., local nameserver - all others



'terative vs. Recursive Queries (2)
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'terative vs. Recursive Queries (3)

Recursive query
* Servers can offload client burden
* Servers can cache results for a pool of clients

Iterative query
e Server can “file and forget”
* Easy to build high load servers



Root Nameservers

Root (dot) is served by 13 server names
* a.root-servers.net to m.root-servers.net
* All nameservers need root IP addresses
* Handled via configuration file (named.ca)

There are >250 distributed server instances
* Highly reachable, reliable service

* Most servers are reached by IP anycast
* Multiple locations advertise same IP! Client go to the closest one.




Root Server Deployment [root-servers.org]
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https://root-servers.org/%5D

Local Nameservers

Often run by IT (enterprise, ISP)
* But may be your host or AP

 Or alternatives e.g., Google public DNS (8.8.8.8)
Cloudflare’s public DNS (1.1.1.1)

Clients need to be able to contact local nameservers
* Configured via DHCP or statically



Caching

Resolution latency needs to be low
e Can take a while to trace from . (dot)

Cache query/responses to answer future queries

* Including partial (iterative) answers
* Responses carry a TTL for caching
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Caching (2)

flits.cs.vu.nl looks up and stores eng.washington.edu
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Caching (3)

flits.cs.vu.nl now directly resolves eng.washington.edu
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Why caching works: Zipt’s law

Few popular items, many unpopular ones
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DNS answers need not be fixed

Give different answers to different clients and at different times
e Based on (an estimate of) client location
 Based on Web server load

Forms the basis of CDNs
* Direct clients to the nearest lightly-loaded server

Caching interferes with dynamic answers — use low TTL



Methods for distributed lookups

Hierarchical directories (e.g., DNS)
e Efficient but vulnerable to failures and attacks

Flooding
 Robust but not scalable

Distributed hash tables
 Robust and scalable but less efficient than hierarchical directories



History of DHTs

(Illegal) file sharing started it all
* Napster was a directory-based system (easy to takedown)

* Gnutella was flooding-based

* Popularity of Gnutella but its simplistic design inspired many researchers
* Chord, CAN, Pastry, Tapestry were submitted to SIGCOMM the same year

File sharing turned out to be a fad but the core technology has become
an important substrate for many distributed applications



Whatis a DHT?

Classic hash table
* Put(key, value)
* Get(key) =2 value

DHTs offer the same interface to applications but under the hood
* Lookup(key) = Address of node that owns the key
e Put(key, value) := Put(Lookup(key), key, value)
* Get(key) := Get(Lookup(key), key)



DHT overview

Goal: Implement lookup over possibly millions of unreliable nodes

* Global information is almost impossible
e State maintained should grow slowly with the number of nodes

* Nodes can come and go (churn)
* No node should be critical to the service

Approach: Different DHTs differ in details but there is a theme
* Map nodes to key space of objects
* Nodes own keys in the neighborhood
* Maintain pointers to other nodes to help route queries



Chord

[Some slides from Kyle Jamieson]



Consistent hashing [Karger ‘97]
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Chord: Successor pointers
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Basic lookup
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Improving performance

* Problem: Forwarding through successor is slow
e Data structure is a linked list: O(n)

* Idea: Can we make it more like a binary search?
* Need to be able to halve distance at each step



“Finger table” allows log N-time lookups
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Finger i Points to Successor of n+2"
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Lookups Take O(log N) Hops
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Implication of finger tables

* A binary lookup tree rooted at every node
* Threaded through other nodes' finger tables

* This is better than simply arranging the nodes in a single tree
* Every node acts as a root
* So there's no root hotspot
* No single point of failure
* But a lot more state in total



Pastry DHT: Network organization
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* Nodes are leaves in a tree
* logN neighbors in sub-trees of varying heights



Pastry DHT routing
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* Route to the sub-tree with the destination



Content-addressable network (CAN) DHT

Embed nodes in a d-dimensional torus

Nodea own keys in their “zone” /

Nodes have pointers to their
neighbors in each dimension

Route to closest neighbor to the key




DNS vs DHTs

DN DH

Node organization Hierarchy Flat meshes

Dynamic node Not supported Supported
membership

Pointers to other nodes Namespace-dependent DHT-design dependent
(.com will have a LOT;
.cs.washington.edu will have

a handful)



DNS vs DHTs

Which one is more load-balanced?

Answer: DHTs

* DNS — more load toward the top of the hierarchy
 DHTs — all nodes are equal (assuming keys are evenly distributed)



DNS vs DHTs

Which one is more scalable (amount of state)?

Answer: DHTs

* Because load is more evenly distributed



DNS vs DHTs

Which one is faster?

Answer: DNS
e Typically, 5 queries (depth)
 DHT: log(N) = 16 for N = 100K

* Each hop could take you half way around the world



Locality-aware DHTs

Prefer neighbors that are proximate

Designs give you flexibility in picking neighbors
e Chord — fingers should point to a node in a key range



Should we build DNS using DHTs?

How about controlling your own availability and load?

* washington.edu depends only on its parents and itself
* no dependence on cousins, siblings, or children
* no impact if others go down
* can provision its own resources
e Control its own cost and service availability
* its load depends only on its zone and children
* Isolated from others



Next class

Distributed routing — finding paths to destinations
* Distance vector
* Link state
e Path vector



