
Name and object lookup
CSE 561, Winter 2021

Ratul Mahajan

What we read

Two completely different approaches to looking up things
1. DNS
2. DHTs (Chord)

DNS

Maps human readable names to IP addresses (and more)

www.uw.edu?

Network

128.94.155.135

DNS

Goals
• Easy to manage with multiple parties
• Efficient (good performance, few resources)

Approach
• Distributed directory, hierarchical namespace
• Automated protocol to tie pieces together

DNS Namespace

Hierarchical, starting from “.” (dot, typically omitted)

DNS Resolution

DNS protocol lets a host resolve any host name
(domain) to IP address

If unknown, can start with the root nameserver and
work down zones

DNS Resolution (2)

• flits.cs.vu.nl resolves robot.cs.washington.edu

Iterative vs. Recursive Queries

Recursive query
• Nameserver resolves and returns final answer
• E.g., flits à local nameserver

Iterative (Authoritative) query
• Nameserver returns answer or who to contact for answer
• E.g., local nameserver à all others

Iterative vs. Recursive Queries (2)

Recursive

Iterative

Iterative vs. Recursive Queries (3)

Recursive query
• Servers can offload client burden
• Servers can cache results for a pool of clients

Iterative query
• Server can “file and forget”
• Easy to build high load servers

Root Nameservers

Root (dot) is served by 13 server names
• a.root-servers.net to m.root-servers.net
• All nameservers need root IP addresses
• Handled via configuration file (named.ca)

There are >250 distributed server instances
• Highly reachable, reliable service
• Most servers are reached by IP anycast

• Multiple locations advertise same IP! Client go to the closest one.

Root Server Deployment [root-servers.org]

https://root-servers.org/%5D

Local Nameservers

Often run by IT (enterprise, ISP)
• But may be your host or AP
• Or alternatives e.g., Google public DNS (8.8.8.8)

Cloudflare’s public DNS (1.1.1.1)

Clients need to be able to contact local nameservers
• Configured via DHCP or statically

Caching

Resolution latency needs to be low
• Can take a while to trace from . (dot)

Cache query/responses to answer future queries
• Including partial (iterative) answers
• Responses carry a TTL for caching

Nameserver

query out

response
Cache

Caching (2)

flits.cs.vu.nl looks up and stores eng.washington.edu

1: query 2: query

UW nameserver
(for washington.edu)

3: eng.washington.edu4: eng.washington.edu

Local nameserver
(for cs.vu.nl)

Cache

Caching (3)

flits.cs.vu.nl now directly resolves eng.washington.edu

1: query

UW nameserver
(for washington.edu)

4: eng.washington.edu

Local nameserver
(for cs.vu.nl)

I know the server for
washington.edu!

Cache

Why caching works: Zipf’s law

Few popular items, many unpopular ones

Zipf popularity
(kth item is 1/k)

Rank

Source: Wikipedia

George Zipf
(1902-1950)

DNS answers need not be fixed

Give different answers to different clients and at different times
• Based on (an estimate of) client location
• Based on Web server load

Forms the basis of CDNs
• Direct clients to the nearest lightly-loaded server

Caching interferes with dynamic answers – use low TTL

Methods for distributed lookups

Hierarchical directories (e.g., DNS)
• Efficient but vulnerable to failures and attacks

Flooding
• Robust but not scalable

Distributed hash tables
• Robust and scalable but less efficient than hierarchical directories

History of DHTs

(Illegal) file sharing started it all
• Napster was a directory-based system (easy to takedown)
• Gnutella was flooding-based
• Popularity of Gnutella but its simplistic design inspired many researchers

• Chord, CAN, Pastry, Tapestry were submitted to SIGCOMM the same year

File sharing turned out to be a fad but the core technology has become
an important substrate for many distributed applications

What is a DHT?

Classic hash table
• Put(key, value)
• Get(key) à value

DHTs offer the same interface to applications but under the hood
• Lookup(key) à Address of node that owns the key
• Put(key, value) := Put(Lookup(key), key, value)
• Get(key) := Get(Lookup(key), key)

DHT overview

Goal: Implement lookup over possibly millions of unreliable nodes
• Global information is almost impossible

• State maintained should grow slowly with the number of nodes
• Nodes can come and go (churn)

• No node should be critical to the service

Approach: Different DHTs differ in details but there is a theme
• Map nodes to key space of objects
• Nodes own keys in the neighborhood
• Maintain pointers to other nodes to help route queries

Chord

[Some slides from Kyle Jamieson]

Consistent hashing [Karger ‘97]

Key is stored at its successor: node with next-higher ID

K80

N32

N90

N105 K20

K5

Circular 7-bit
ID space

Key 5

Node 105

Chord: Successor pointers

K80

N32

N90

N105
N10

N60

N120

Basic lookup

K80

N32

N90

N105
N10

N60

N120

“N90 has K
80”

“Where is K80?”

• Problem: Forwarding through successor is slow

• Data structure is a linked list: O(n)

• Idea: Can we make it more like a binary search?
• Need to be able to halve distance at each step

Improving performance

“Finger table” allows log N-time lookups

N80

½¼

1/8

1/16
1/32
1/64

Finger i Points to Successor of n+2i

N80

½¼

1/8

1/16
1/32
1/64

K112
N120

Lookups Take O(log N) Hops

N32

N10

N5

N20
N110

N99

N80

N60

Lookup(K19)

K19

• A binary lookup tree rooted at every node
• Threaded through other nodes' finger tables

• This is better than simply arranging the nodes in a single tree
• Every node acts as a root
• So there's no root hotspot
• No single point of failure
• But a lot more state in total

Implication of finger tables

Pastry DHT: Network organization

• Nodes are leaves in a tree
• logN neighbors in sub-trees of varying heights

001000 011010 101100 111110

h = 2

h = 1

h = 3

Pastry DHT routing

001000 011010 101100 111110

111

h = 3

h = 2

• Route to the sub-tree with the destination

Content-addressable network (CAN) DHT

Embed nodes in a d-dimensional torus

Nodea own keys in their “zone”

Nodes have pointers to their
neighbors in each dimension

Route to closest neighbor to the key

(a,b)

S

DNS vs DHTs

DNS DHTs
Node organization Hierarchy Flat meshes
Dynamic node
membership

Not supported Supported

Pointers to other nodes Namespace-dependent
(.com will have a LOT;
.cs.washington.edu will have
a handful)

DHT-design dependent

DNS vs DHTs

Which one is more load-balanced?

Answer: DHTs
• DNS – more load toward the top of the hierarchy
• DHTs – all nodes are equal (assuming keys are evenly distributed)

DNS vs DHTs

Which one is more scalable (amount of state)?

Answer: DHTs
• Because load is more evenly distributed

DNS vs DHTs

Which one is faster?

Answer: DNS
• Typically, 5 queries (depth)
• DHT: log(N) = 16 for N = 100K

• Each hop could take you half way around the world

Locality-aware DHTs

Prefer neighbors that are proximate

Designs give you flexibility in picking neighbors
• Chord – fingers should point to a node in a key range

Should we build DNS using DHTs?

How about controlling your own availability and load?
• washington.edu depends only on its parents and itself

• no dependence on cousins, siblings, or children
• no impact if others go down

• can provision its own resources
• Control its own cost and service availability

• its load depends only on its zone and children
• Isolated from others

Next class

Distributed routing – finding paths to destinations
• Distance vector
• Link state
• Path vector

