
Internet design philosophy
CSE 561, Winter 2021

Ratul Mahajan

What we read

Two foundational papers that extract principles from Internet design
• The Design Philosophy of DARPA Internet Protocols

Clark, 1988

• End-to-end Arguments in System Design
Saltzer, Reed, and Clark, 1984

These principles were not even articulated, let alone be explicit design
goal, when the Internet was being engineered

http://nms.lcs.mit.edu/6829-papers/darpa-internet.pdf
https://web.mit.edu/Saltzer/www/publications/endtoend/endtoend.pdf

Many applications, disparate requirements

File transfer: High throughput, reliability
YouTube: Min throughput, low jitter
Phone call: Low jitter, low latency
Zoom: Low jitter, minimum throughput, low latency
Web: Low latency

Your next idea

How to design a network that satisfies them all?

Two meta decisions
• Service model: Datagram or virtual circuits?
• What functionality to put in the network?

• Reliable delivery
• Delivery acknowledgement
• Prevent duplication
• Guarantee minimum throughput
• Guarantee latency
• FIFO
• Encryption
• Authentication
• …

Two network service models

•Datagrams or packet switching
• Connectionless service
• Like postal letters

•Virtual circuits or circuit switching
• Connection-oriented service
• Like a telephone call

Datagram model

•Packets contain a destination address; each router
uses it to forward packets, maybe on different paths

Network

Datagram model (2)

•Each router has a forwarding table keyed by address
• Gives next hop for each destination address; may change

A’s table (initially) A’s table (later) C’s Table E’s Table

B
B

Virtual circuit model

• Three phases:
1. Connection establishment, circuit is set up
• Path is chosen, circuit information stored in routers

2. Data transfer, circuit is used
• Packets are forwarded along the path

3. Connection teardown, circuit is deleted
• Circuit information is removed from routers

• Just like a telephone circuit, but virtual in that no
bandwidth need be reserved; statistical sharing of links

Virtual circuits

•Packets contain a short label to identify the circuit
• Labels don’t have global meaning, only unique for a link

CSE 461 University of Washington

ISP’s equipment

Virtual circuits (2)

•Each router has a forwarding table keyed by circuit
• Gives output line and next label to place on packet

A’s table C’s Table E’s Table

1

1

Circuit #1

Circuit #2

5

2 2 2H3

H1 1 1 F

F

5 5

Datagrams vs virtual circuits

Issue Datagrams Virtual Circuits

Setup phase Not needed Required

Router state Per destination Per connection

Addresses Packet carries full address Packet carries short label

Forwarding Per packet Per circuit

Quality of service Difficult to add Easier to add

Masking failures Easy Hard
Goal1: Internet communication must continue
despite loss of networks or gateways.

Masking failures with datagrams

X

Routers have no connection state, so
datagrams can be easily re-routed
• Possible but difficult with VCs

Hosts have connection state
• “Fate sharing”

Moot point when there are single-
points of failure in the network

What functionality to put in the network?

Internet: As little as possible
• Hard to think of a simpler network

Goal 2: The Internet must support
multiple types of communication service.

Goal 3: The Internet architecture must
accommodate a variety of networks.

End-to-end argument

Functionality in the network gets in the
way of services that do not need it

Some networks may not be capable of
providing expected functionality

Generally not possible for network to meet
exact application requirements

These are different concerns

The cost of in-network functionality

Consider reliability and common ways of providing it
1. Cache the packet and resend if it is not acknowledged

• Needs extra memory and some compute in routers

2. Send multiple times
• High network overhead

3. Error coding
• Simple example:

• Send A ⊕ B in addition to sending A and B.
• Recover A using B and A ⊕ B

• Needs extra computation at the sender and memory at the receiver

Were the other Internet goals met?

Goal 4: The Internet architecture must permit distributed management
of its resources.

Goal 5: The Internet architecture must be cost effective.

Goal 6: The Internet architecture must permit host attachment with a
low level of effort.

Goal 7: The resources used in the internet architecture must be
accountable.

Limitations of Internet’s architecture

Security
• DoS attacks – you can send an arbitrary amount, anonymously
• Phishing – identity spoofing
• Prefix hijacking

Hard to support highly demanding applications

Suboptimal efficiency and performance

Privacy

Discussion

Were those the right design goals for that time?

What should be the design goals now?

End-to-End principle

End-to-end Principle

•Broad networking principle
• First implementation in French CYCLADES network (after ARPA)

(1970)
• Articulated in its most recognizable form by Saltzer, Reed, Clark

(1981) [paper]

• Guidance on placing functionality such as reliability,
security, etc.—in network or at endpoints (hosts)?
• Argues for endpoint placement

https://web.mit.edu/Saltzer/www/publications/endtoend/endtoend.pdf

Multiple interpretations of the principle

• The network cannot be trusted. Do it yourself.
• The network can suffer heavy damage
• Nuclear attacks (but not DDoS attacks!)

• Need end-to-end correctness anyway

• Diminishing returns from in-network functionality
• Not everyone needs it

• Place functionality in the network only when necessary
• E.g., for performance

E2E Example: Error-correcting codes

IP:
Host detects
errors

802.11:
Link detects errors

E2E Example: ARQ

TCP:
Host retransmits
on failure

802.11:
Link detects drops
and retransmits

E2E Example: In-order delivery

TCP:
Host enforces in-
order delivery

SS5:
Network enforces
in-order delivery

E2E Example: Security

SSL:
Host encrypts
content

GSM:
Network encrypts
content

End-to-End limitations

• Some functionality cannot be implemented at endpoints
• NATs, DoS protection, … the principle is silent on these

• Assumes a clear dividing line between network and endpoints
• Reality of distributed applications (e.g., CDNs) is more complex

• No guidance on how much functionality can go in the network
for performance

What is the opposite of e2e argument?

1. Network with rich functionality that covers most requirements
• E.g., phone network
• Practical for a data network?

2. Network with multiple ”lanes”?
• CISC-like
• Slight aside: Can applications be trusted?

3. Modular network
• Applications mix-n-match what they need

Your thoughts (1)

User-level stacks, kernel-bypass, abstractions …

Ap
p

1

Ap
p

2

Ap
p

3

Ap
p

1

Ap
p

2

Ap
p

3

TCP UDP

HTTP FTP

App 1 App 2

Monolithic applications – bundle everything Modularity based on layers or libraries

TCP UDP

HTTP FTP

App 1 App 2

Your thoughts (2)

What about throughput?

Reliability has a throughput cost too

Your thoughts (3)

Show me the data (for resource usage)

Assume that
• Error rate: 5%
• If fraction of applications that want reliability is 100%

• With end-host recovery, 105 packets per 100 data packets
• With network recovery, 105 packets ….

• If fraction of applications that want reliability is 10%
• With end-host recovery, 100.5 packets per 100 data packets
• With network recovery, 105 packets …

Do you know the numbers for all networks and in the future?

Summary

The Internet is but one possible design for a large internetwork

The design is optimized for
• Fault tolerance
• Diversity of applications and networks
• Keep network simple, push complexity to the ends

(Future classes will tinker with this in various ways.)

Next class: Object lookup

Name to location mapping at at Internet scale
• DNS – hierarchical names cs.washington.edu
• DHTs – flat names

