
CSE 561 – Error detection & correction

David Wetherall
djw@cs.washington.edu

C d f E D t ti /C tiCodes for Error Detection/Correction

• Error detection and correction• Error detection and correction
– How do we detect and correct messages

that are garbled during transmission? Presentation
Application

• The responsibility for doing this cuts
across the different layers N t k

Transport
Session

across the different layers
– But we’re mostly thinking about links

right now Physical
Data Link
Network

L3.2djw // CSE 561, Spring 2010

E D t ti /C ti C dError Detection/Correction Codes

A h D bit f d t i t D+R bit i it l 2D di ti t bit• A scheme maps D bits of data into D+R bits – i.e., it uses only 2D distinct bit
strings of the 2D+R possible.

D data bits R ECC bits (systematic)

• The sender computes the ECC bits based on the data.

• The receiver also computes ECC bits for the data it receives and compares them
with the ECC bits it received Mismatches detect errors And mapping to thewith the ECC bits it received. Mismatches detect errors. And mapping to the
closest valid codeword can correct errors.

• Detection/correction schemes are characterized in two ways:

– Overhead: ratio of total bits sent to data bits, minus 1
• Example: 1000 data bits + 100 code bits = 10% overhead

– The errors they detect/correct
• E.g., all single-bit errors, all bursts of fewer than 3 bits, etc.

L3.3djw // CSE 561, Spring 2010

Th H i Di tThe Hamming Distance

• Errors must not turn one valid codeword into another valid
codeword, or we cannot detect/correct them.

• Hamming distance of a code is the smallest number of bitHamming distance of a code is the smallest number of bit
differences that turn any one codeword into another
– e.g, code 000 for 0, 111 for 1, Hamming distance is 3

F d ith di t d+1• For code with distance d+1:
– d errors can be detected, e.g, 001, 010, 110, 101, 011

• For code with distance 2d+1:
– d errors can be corrected, e.g., 001  000

L3.4djw // CSE 561, Spring 2010

Ch kChecksums

• Used in Internet protocols (IP, ICMP, TCP, UDP)
• Basic Idea: Add up the data and send it along with sum

• Algorithm:
– Mouthful for “sum”: “checksum is the 1s complement of the 1sMouthful for sum : checksum is the 1s complement of the 1s

complement sum of the data interpreted 16 bits at a time” (for 16-bit
TCP/UDP checksum)

– 1s complement nit: flip all bits to make a number negative, so adding s co p e e t t: p a b ts to a e a u be egat ve, so add g
requires carryout to be added back.

• Q: What kind of errors will/won’t checksums detect?• Q: What kind of errors will/won t checksums detect?

L3.5djw // CSE 561, Spring 2010

I t t h k tiInternet checksum properties

• Catches all error bursts up to 15 bits, most 16 bits
• Random errors detected with prob 1 – 2^-16

• Fails to catch transpositions, insertion/deletion of zeros,
combinations
– These are typically hardware/software bugs not random errors

djw // CSE 561, Spring 2010 L2.6

Fl t h b tt h kFletcher – a better checksum

• Includes a “positional component”

• Now sensitive to order of data• Now sensitive to order of data
– slightly more computation, but well worth it

djw // CSE 561, Spring 2010 L2.7

CRC (C li R d d Ch k)CRCs (Cyclic Redundancy Check)

• Stronger protection than checksums
– Used widely in practice, e.g., Ethernet CRC-32
– Implemented in hardware (XORs and shifts)

• Algorithm: Given n bits of data, generate a k bit check
sequence that gives a combined n + k bits that are divisible by

h di i C()a chosen divisor C(x)

• Based on mathematics of finite fields
“numbers” correspond to polynomials use modulo arithmetic– numbers correspond to polynomials, use modulo arithmetic

– e.g, interpret 10011010 as x7 + x4 + x3 + x1

• Q: What kind of errors will/won’t checksums detect?Q

L3.8djw // CSE 561, Spring 2010

“St d d” CRC 32“Standard” CRC-32

• It is
– CRC-32: 100000100110000010001110110110111
– Used for Ethernet, cable modems, ADSL, PPP, …

• Catches
– All 1 and 2 bit errors
– All burst errors < 32 bitsAll burst errors < 32 bits
– All errors with an odd number of flips
– All based on mathematical properties; look in the book
– Random errors with prob 1- 2^-32Random errors with prob 1- 2 -32

• Stronger than checksums

L3.9djw // CSE 561, Spring 2010

A b tt CRCA better CRC

• Castagnoli,
Koopman
– Via exhaustiveVia exhaustive

search!

djw // CSE 561, Spring 2010 L3.10

R l E D t ti /C ti dReal Error Detection/Correction codes

• Detection
– Checksums, but weak
– CRCs widely usedCRCs, widely used

• Correction
– Convolutional codes
– Reed-Solomon / BCH
– Low-density Parity Check (LDPC) codes futureLow-density Parity Check (LDPC) codes  future

• Based on mathematical properties …p p

L3.11djw // CSE 561, Spring 2010

P tt f E M ttPatterns of Errors Matter

• Q: Suppose you expect a bit error rate of about 1 bit per 1000
sent. What fraction of packets would be corrupted if they
were 1000 bits long (and you could detect all errors butwere 1000 bits long (and you could detect all errors but
correct none)?

d d h f• A: It depends on the pattern of errors
– Bit errors occur at random

• Packet error rate is about 1 – 0.9991000 = 63%
– Errors occur in bursts, e.g., 100 consecutive bits every 100,000 bits

• Packet error rate ≤ 2%

L3.12djw // CSE 561, Spring 2010

R l E M d lReal Error Models

• Random, e.g., thermal noise as in AWGN
• Bursty, e.g., wires, if there is an error it is likely to be a burst

– Common due to physical effects
• Errors can also be “erasures”, e.g., lost packet

• For bursty errors, either want:
– A code that is built to handle them well
– To convert them to random errors (interleaving)

• Interleaving
– Error-free code words: aaaabbbbccccddddeeeeffffgggg

Interleaved: abcdefgabcdefgabcdefgabcdefg
T i i / b b d f b d b d f b d f– Transmission w/ burst error: abcdefgabcd____bcdefgabcdefg
Received w/ deinterleaving: aa_abbbbccccdddde_eef_ffg_gg

L3.13djw // CSE 561, Spring 2010

E C tiError Correction

• Two strategies to correct errors:
– Detect and retransmit, or Automatic Repeat reQuest. (ARQ)
– Error correcting codes or Forward Error Correction (FEC)Error correcting codes, or Forward Error Correction (FEC)

• Question: Which should we choose?

L3.14djw // CSE 561, Spring 2010

ARQ FECARQ vs. FEC

• Will depend on the kind of errors and cost of recovery
• Example: Message with 1000 bits, Prob(bit error) 0.001

– Case 1: random errorsCase 1: random errors
– Case 2: bursts of 1000 errors

FEC d t l l l t l id l t• FEC used at low-level to lower residual error rate
• ARQ often used at packet level to fix large errors, e.g.,

collision, loss, as well as protect against residual errors
• FEC sometimes used at high level, e.g.:

– Real time applications (no time to retransmit!)
– Nice interaction with broadcast (different receiver errors!)Nice interaction with broadcast (different receiver errors!)

L3.15djw // CSE 561, Spring 2010

802 11 d t ti / ti802.11 error detection/correction

• The standard scheme is:

Li k 32 bit CRC f d t i i• Link: 32 bit CRC on frame and retransmission
• PHY header has 16 bit CRC
• PHY: FEC on data via interleaving and a binary convolutional• PHY: FEC on data via interleaving and a binary convolutional

code (or other options)
– rates from ½ to 5/6.

djw // CSE 561, Spring 2010 L3.16

M llMaranello

• What is the goal of the scheme?
• Why are there all these errors to correct anyway?

H d th h k?• How does the scheme work?
• What is the scheme assuming about errors?
• What are the performance costs?• What are the performance costs?
• What are the performance benefits?
• How else might we design “partial packet recovery”?g g p p y

djw // CSE 561, Spring 2010 L3.17

R li bl T i iReliable Transmission

• Because there may be uncorrectable errors (no matter what ECC scheme is
used), how can the sender be sure that the receiver got the data?
– The sender must receive an acknowledgement (ACK) from the sender

Sender Receiver

Frame

time What if noACK
is received?

ACK
Sender now
knows data

was received

is received?

10/09, JZ, edited by DJW

Timeouts / Automatic Repeat Request (ARQ)

• If no ACK comes back, the sender must re-send the data (ARQ)If no ACK comes back, the sender must re send the data (ARQ)
– When is the sender sure that no ACK is coming back?

• As a practical matter delays are difficult to bound except for direct links
• Sender chooses some reasonable timeout – if the ACK isn’t back in that much

time, it assumes it will never see an ACK, and re-sends

Sender Receiver

Frame

ti t What if original
time

Resend

timeout What if original
frame arrived, but

ACK was lost?

10/09, JZ, edited by DJW

Duplicate Detection: Sequence Numbers

• So that the receiver can detect (and discard) duplicates,
distinct frames are given distinct sequence numbers
– E g 0 1 2 3E.g., 0, 1, 2, 3, …

• When a frame is re-sent, it is re-sent with the same sequence
b th i i lnumber as the original

• The receiver keeps some information about what sequence p q
numbers it has seen, and discards arriving packets that are
duplicates

10/09, JZ, edited by DJW

