Extending Place Lab to 3-D

Tyler Robison Alan Liu

Basic concept

- Want to determine location inside a building
- Sample applications:
 - Position-aware reminders
 - Location-aware buddy list
 - Guidance for the cognitively impaired
 - Smart conference rooms

Idea

Collecting data

•Beacon readings and ground truth were collected using a GUI showing map of each floor

Intel's Place Lab

- Java codebase
- Provides basic localization functionality
 - Reading signals
 - WiFi
 - GPS
 - Particle filters
 - GUI classes
- Designed to be extended

Research issues

- How to interpret beacon readings
 - Compute centroid of APs heard
 - Use particle filter
- Place Lab extensions:
 - Beacon database includes extra information (e.g., floor)
 - Sensor model updated to include signal attenuation due to floors
 - Motion model updated to change floor variable

Evaluation-floor estimation

Particle Filter w/ floor attenuation

Evaluation – location estimation

	Mean 2d error	Median 2d error	Std. dev.
Particle filter	31.4m	32.3	11.9
Centroid of APs on floor	12.6	11.2	9.0

•Particle filter uses original sensor model (based on *signal strength*), with a floor attenuation factor of 0.8

- •Centroid first computes the mode of the stronger half of APs heard to determine floor, then takes the centroid of those APs
- •Note: highly calibrated fingerprinting systems can get 5-10m accuracy

Improving accuracy

- Sensor model
 - Classify APs based on their physical properties (model-based)
 - Empirically learn AP properties (histogram- or fingerprint-based)
- Binning based on response rate at different distances from APs
 - Bin size of 10m produces mean 2d error of 17.2m, median error of 14.5m
 - Doesn't take into account effects across different floors: only gets right floor 15% of the time, within 1 floor 87% of the time
- Binning based on distance and floor
 - Bin size of 10m produces mean 2d error of 16.4m, median error of 16.0m
 - Gets right floor 56% of the time, within 1 floor 99% of the time

Map Based Particle Filter

- Take into account knowledge of environment
 - Walls
 - Open spaces
 - Stairwells/elevators
- Intuitively, a signal passing through several walls should be weaker
- Mobile computers shouldn't change floors unless in an elevator or stairwell
- For each particle in particle filter, use this information to decide what its likelihood is

Barometric pressure

Tradeoffs

Can get better accuracy with

- More extensive fingerprinting
- Additional sensors (accel, barometric, ultrasound)

But this comes at a price (time and money)

- Data collection and management
- Equipment calibration
- This limits scalability

Thanks!

Questions?