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Abstract
Many techniques have been proposed for discerning internet topol-
ogy, but not so many of them have been studied for their utility:
the returns in information that they provide as their number of mea-
surements increases. We define a probabilistic model for represent-
ing a map built on uncertain observations. We propose new utility
metrics and reuse existing metrics in combination with this model
to examine the marginal utility of observations for maps made with
three different tools: Skitter, Scriptroute, and Rocketfuel. We de-
fine classes of observations and quantify their relative utilities and
discuss how these results can influence future mapping techniques.

1 Introduction
At a high level, internet mapping is a simple concept: create an ac-
curate, complete map of all or part of the Internet. Some mapping
attempts seek to find the internet’s physical topology of routers and
cables between them, while other attempts seek to find logical in-
terfaces and the virtual links between these interfaces. In both cases
the goal is the same: to create a graph representing the interconnec-
tions between nodes on the internet.

There are many reasons one might want to create maps of the
internet. The first is for research. By studying the topology of
the internet we can study how the internet changes, and speculate
about its development. In addition to basic research, another use
for accurate maps of the internet is in the creation of equally ac-
curate simulations. By having a real topology, new protocols and
hypotheses can be tested and validated in real-world conditions.
Understanding the topology of a network also allows for easier di-
agnosis of problems in the network. Finally, overlay networks can
benefit from knowing the topology of the networks over which they
operate.

Unfortunately, mapping the internet is not a simple matter of ob-
servation. The topology of the internet is not directly observable in
its entirety. It can only be seen by sending individual traceroutes
across it. Each single probe gives us an indirect view of part of the
underlying topology and with enough such probes a semi-complete
map can be created. The success of this approach depends on a
number of factors: the traceroute source, the traceroute target, the
conditions of the network, routing policies in the network, and the
network topology itself. For mapping, we are at the mercy of the

behavior of the network itself and only have under our control the
sources and targets of our traces. The challenge is to build an ac-
curate map under this constraint.

Even if one is able to gather enough probes to build a complete
map, this approach is still hampered by the fact that the internet is a
dynamic system where links and routers are constantly being added
and removed. Since we cannot complete all traceroute probes in-
stantaneously, there is a period of time over which the mapping
must be conducted. Many changes to topology and routing can oc-
cur during this period, which can introduce errors to the ultimate
topology that is discerned.

Two types of errors can occur: false positives and false nega-
tives. False negatives can occur when our traceroutes do not tra-
verse some part of the actual topology—we have failed to map
some part of the internet. False negatives also occur when nodes
along a path do not respond to a traceroute. False positives occur
for a number of reasons. First, a link or node could be removed
from the topology after having been observed. That is, we may
observe a link or node that later disappears, causing our map to be
out of date. Routing changes during a traceroute can also cause a
false positive. Because traceroutes incrementally probe each node
along a route, if routing changes mid-traceroute then we “discover”
an edge that does not actually exist. Thus, traceroute is a “noisy
sensor” and the data gathered via traceroutes should be considered
noisy data.

In order to make maps that are as complete as possible, many
mapping tools add more traceroutes from more sources to more
targets in the hopes of making a more thorough map. Intuitively,
this technique hopes to maximize discovery—the number of new
nodes and edges seen—at the expense of collecting more redundant
data. Does data bear this intuition out: how redundant are these
tools?

At least one mapping tool, Rocketfuel, has attempted to use
heuristics to choose which traceroutes to perform in order to re-
duce redundant data collection without sacrificing discovery. But
such pruning is at odds with a desire to reduce the noise in the
data—normally, more data is needed to overcome noise, not less.
Does Rocketfuel indeed have less redundancy, and if so, what is
the trade off between that reduction and uncertainty due to noise?

To answer these questions, we will examine the marginal utility
of observations for maps made with three different tools: Skitter,
Scriptroute, and Rocketfuel. Marginal utility is the contextual use-
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fulness of an observation, given all of the observations that have
preceded it.

This paper makes a number of contributions to the analysis of
internet mapping. First, we analyze how efficiently different map-
ping tools make use of their traceroutes to build topology maps.
Second, we investigate and quantify whether certain traceroute
measurements are more valuable than others. Third, we are the
first to perform such an analysis while treating traceroute as a noisy
sensor. Finally, given the uncertainty in our traceroute observa-
tions, we quantify how different mapping methods cope with this
uncertainty.

Paper Outline Section 2 discusses our methodology for model-
ing and evaluating the production of maps by each tool. Section 3
describes the three data sets that we used. Section 4 describes our
evaluation metrics and applies them to the data to yield the raw
analyses. Section 5 discusses the results of the analyses. Sections
6 and 7 discuss related and future work, respectively, and Section 8
concludes.

2 Methodology

2.1 Modeling and Evaluating a Map
In order to quantify the relative coverage of different maps, we
model a map as a directed graph G = (V,E), where V and E
denote the usual sets of nodes and edges, respectively. Each node
and edge also has an associated count of the number of times it
was observed during the construction of the map. A map is con-
structed over time as an aggregation of discrete measurements. For
our study, a measurement is simply a single source or target. Each
measurement returns a partial map, which is added to a growing
intermediate map. The intermediate map is the union of all mea-
surements’ partial maps, with their observation counts summed ap-
propriately. The final map is the intermediate map left after the last
measurement. We measure the utility of adding measurements in
terms of changes to the intermediate map.

There is some hypothetical map Ĝ that captures the true topol-
ogy of the internet at a given moment, but without total omni-
science across all ISPs, Ĝ can never be constructed. Instead, each
G that we induce is an approximation of Ĝ. Furthermore, it is an
approximation in two distinct ways. First, if there are no false pos-
itives in the traceroute observations, the nodes and edges of G will
clearly be only subsets of the true nodes and edges of Ĝ. Secondly,
if there are false positives, then V and E may be erroneous super-
sets of V̂ and Ê.

An ideal evaluation of any map would be a comparison of the
constructed map to Ĝ, and an ideal evaluation of any mapping tool
would compare additional measurements in terms of the resulting
intermediate map’s approximation to Ĝ. Since we do not have a
way to compare maps to Ĝ, we instead use the final map produced
by a tool as that tool’s best approximation to Ĝ. Each additional
measurement is evaluated by comparing the new intermediate map

to the final map. This is the same method used in [1], so our results
may be compared to theirs.

2.2 Confidence Weighting
As mentioned, observations of internet topology are not direct and
there can be errors in the observations that divorce them from re-
ality. To model this uncertainty, the observation counts associated
with each node and edge are used to compute the probability that
the node or edge actually exists. To represent the fact that the ob-
servations are only indirect evidence of the existence of a node or
edge, we model each traceroute as a noisy sensor. There is a prob-
ability of error, d (for “doubt”) associated with the sensor. The
probability P (v) that a node v exists is 1 − dn(v), where n(v) is
the number of times v was observed. The same formula applies for
edges, with n(e) substituted. P (v) can be thought of as a measure
of confidence in the existence of v. P (v) = 1 indicates absolute
certainty, and P (v) = 0 indicates total doubt. 1 − d can then be
thought of as a “confidence increment.” Each observation moves
confidence 1− d percent closer to certainty.

Three facts should be noted about the effect of d on P (v).

P (v) = 0 ∀n(v) when d = 1 (1)
P (v) = 1 ∀n(v) when d = 0 (2)

lim
n(v)→∞

P (v) = 1 when 0 < d < 1 (3)

Equation 1 is the obvious assertion that under total doubt no
amount of evidence will ever increase confidence. Equation 2
shows that when no error is assumed, confidence moves to ab-
solute certainty after a single observation and stays there for all
future observations. This is the model previously used to measure
performance of mapping tools, so our study can reproduce earlier
results by setting d to 1. Equation 3 shows that in the limit of infi-
nite evidence confidence will always converge to certainty for any
non-zero error probability. This also has the corollary that each
successive observation increases P (v) less than any earlier obser-
vation. Thus redundant observations only help up to a point. Even
when accounting for uncertainty, there is still a diminishing return
for redundant information.

A single error parameter assumes symmetric false positive and
false negative error probabilities. Such an assumption is clearly
an oversimplification, but we want only to examine the trade-off
between redundancy and confidence so it suffices for our study. By
varying the value of d used during an analysis, we can determine
what level of doubt a tool can support. This allows us to quantify
the trade-off between efficiency and certainty when given a certain
amount of redundancy.

2.3 Evaluation
We use four different metrics to evaluate the utility of adding new
measurements to a map: cumulative coverage, novel discovery ra-
tios, entropy, and Kullback-Leibler divergence. (Each metric is
described individually in Section 4.) We divide measurements into



new sources or new targets, and apply each metric to each of the
three data sets under each division.

3 Data
We analyzed data produced by three different mapping tools. Each
tool also has access to a different set of sources and uses a (poten-
tially) different list of targets. More importantly, each tool has a
different strategy for generating traceroutes and aggregating them
into a map. Since all three tools rely on traceroute for their obser-
vations, they all share a natural division of their measurements into
per source or per target groups.

3.1 Skitter
The first data set comes from the CAIDA Skitter tool [2]. Skitter
is a collection of 24 sources and 5 (potentially overlapping) tar-
get lists. The target lists range in size from 133,000 to 824,000
with a total of 1,119,373 unique targets. Each source uses one or
more of the target lists and continually loops through its chosen
lists sending traceroutes to each target. We selected 3 days worth
of data from December 2002 so that they would overlap with the
data described in Section 3.2. Altogether, the Skitter data contains
36,976,237 separate traceroutes.

Skitter is not specifically a mapping tool, but is a larger sensor
intended to continually gather data about the internet. Many maps
have been made from Skitter data, though, and thus our analysis is
not of Skitter in its entirety but of its use as a source of mapping
data. When building a map, we take each of the 24 sources as a new
measurement and add all traces from that source to the intermedi-
ate map. The sources are ordered randomly. Since targets are not
standardized across sources, there are unstable results caused by
the uncontrolled variable. Nevertheless, any map built with Skitter
data will have to use all of the data from a source or none of it and
thus any map builder could benefit from our analysis. Because of
complications from overlap within the target lists, we were not able
to analyze the Skitter data rigorously per target.

3.2 Scriptroute
The second data set was originally presented in [4]. It was gathered
over December 18, 19, and 20, 2002. It uses 70 distinct sources,
and has 251,518 unique targets chosen from 125,000 network pre-
fixes advertised via BGP. It contains 11,132,254 different tracer-
outes. These traceroutes have been post-processed to remove the
first and final few hops. Thus they contain “backbone-only” paths
more likely to be free of gateway routers and end hosts.

Like Skitter, Scriptroute [6] is not specifically a mapping tool,
but rather a framework from which to run distributed internet mea-
surements. Each source in this data set is a Scriptroute host, but
the data we analyze was gathered specifically to map the internet.
Each source sent traceroutes to all of the target prefixes and finished
a complete run in approximately 6 hours. One run was launched
per day.

For per source studies of the Scriptroute data we ordered the
sources randomly. Because of the large number of targets and total
traceroutes, we could not perform an exhaustive per target analysis.
We instead selected a random sample of 33,000 targets from the
first day and analyzed the map constructed with just these targets.

3.3 Rocketfuel
The final data set was originally presented in [5]. It was gathered
from December 27, 2001 through February 1, 2002. It uses 837
distinct vantage points and 59,994 unique targets. (A target in this
data set is a block of IP addresses from which one representative is
chosen.) Altogether, it comprises 1,049,235 different traceroutes.

Rocketfuel is specifically designed to minimize the number of
traces required for building a complete map of an ISP. It attempts
to discern the entry and exit points for routes traversing the ISP
and select only those routes predicted to maximize the amount of
new information gathered. As such, it is not an “internet-wide”
mapping tool as much as it is an ISP specific mapping tool. This
data set contains the aggregate data gathered to map 10 different
ISPs.

This data set was gathered with publicly available traceroute
servers. To minimize the load on these shared resources, each
source was only asked to perform one traceroute every five
minutes—hence the month required to complete the entire map-
ping.

We analyzed this data completely both by source and by target.
Both measurement sets are ordered randomly. Since Rocketfuel
chooses sources and targets together, there is some uncontrolled
variance in targets when different sources are selected (and vice
versa).

4 Analyses
Each subsection below describes a metric and presents the results
of evaluating that metric across all three mapping tools.

Each plot shows the metric as it was applied to four different
map representations, where the value of d varies between each rep-
resentation. The first line is always for d = 0.0, which is zero
error and is thus the same assumption as earlier studies. The other
lines are for values of 0.3, 0.5, and the extreme 0.9. We chose to
show 0.3 because it represents a confidence level that reaches 0.97
after 3 observations and 0.99 after 4 observations. Requiring 3 or
4 observations to raise belief acceptably high is an initial heuristic
suggested by [7]. We chose 0.5 and 0.9 because they show increas-
ingly less credible extremes of doubt—traceroute is probably not in
error 50% of the time, and certainly not 90% of the time. But some
of the tools produce maps with enough redundancy to support error
probabilities that high and we want to make that evident.

4.1 Node and Edge Coverage
The first, obvious metric for determining the value of a adding new
measurement to a map is the increase in cumulative coverage that
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Figure 1: Per source coverage, Skitter

the measurement brings. We define the node coverage of a map as
the mean probability of all possible nodes.∑

v∈V P (v)
|V |

V is the set of nodes from the final map to which we are com-
paring all intermediate maps. If a node has not been observed, its
probability is zero. And if d is 0, then the node coverage is simply
the ratio of nodes seen so far, and is exactly equivalent to the node
coverage defined in [1]. Edge coverage is defined similarly.

The net increase in coverage for each new measurement is an
indication of that measurement’s utility to the final map relative to
the size of the final map. A consistent increase in cumulative size
as measurements are added would show that each new measure-
ment is contributing new information to the graph. A decline in the
growth of the cumulative map would show that new measurements
are becoming redundant.

The coverage plots in this section have an additional line run-
ning along the bottom that shows the total number of unique node
or edge observations for a given measurement. If there were no
redundancies, the line for zero error probability would simply be
the running sum of the values on the total observation line.

4.1.1 Skitter

Figures 1(a) and 1(b) show Skitter’s cumulative node and edge cov-
erage per source. The most obvious feature of these graphs is that
the coverage rises to a stable level after only 2 source, then stays
steady, then shoots up after the 18th source, before staying steady
again. We do not believe that this is the result of a particularly
advantageous source. The 18th source in this ordering has a set
of target lists that contain 68% more targets than the entire num-
ber of targets probed up to that point. The gain in coverage for
that source is a function of the increase in targets, not an additional
source. Further support for that conclusion is the large number of
total nodes probed for the 22nd source. It too has a much larger
target list than all other sources except the 18th, but its list still
overlaps with the target lists of the 18th source. That there is not
an equivalent change in coverage for the 22nd source suggests that
the spike is from targets. We further test this hypothesis by reorder-
ing a subset of the data. The results of that reordering are presented
in Section 5.

Additionally, note how close together the 0.0, 0.3, and 0.5 error
probability lines are for node coverage. That there is no appreciable
spread between them shows that the data is redundant enough to
push them into the limits of very diminished utility. The spread
is greater for edge coverage, however, and indeed, edge coverage
continues to increase while node coverage has steadied. There is a
greater utility in additional sources for discovering edges than there
is for discovering nodes. (It is difficult to compare the confidence
weights here due to differences in scale. They will become clearer
under normalized metrics, particularly in Section 4.3.)

4.1.2 Scriptroute

Figures 2(a) and 2(c) show Scriptroute’s cumulative node and edge
coverage per source. Predictably, its node coverage rises quickly
and then levels to a much shallower rate of increase. The later
sources with appreciably higher numbers of nodes probed do not
cause correspondingly appreciable increases in coverage. Note
also that it sees half of all nodes from the very first source.

The edge coverage rises more steadily, displaying a better return
per additional source. Increases in the number of edges seen cause
increases in cumulative coverage, and the difference between er-
ror probabilities is more pronounced. For this data as well there is
more utility in new sources for edge coverage than for node cover-
age.

Figures 2(b) and 2(d) show Scriptroute’s cumulative node and
edge coverage per target. Since it is expected that a new target
adds at least one new node and edge (the target itself and the edge
leading to the target) we have added the line y = x to the graphs
for comparison. Even though it rises quickly in the beginning, cov-
erage continues to increase through additional targets more than it
does through additional sources. While its slope becomes linear
it is still greater than one, showing that each new target still adds
more than just itself to the coverage.
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Figure 2: Cumulative coverage, Scriptroute
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Figure 3: Cumulative coverage, Rocketfuel



4.1.3 Rocketfuel

Figures 3(a) and 3(c) show Rocketfuel’s cumulative node and edge
coverage per source. Its coverage increases quickly with the first
measurements, but more erratically than the other tools. It also
does not decrease in gain as fast as the others. These figures suggest
that Rocketfuel lives up to its promise of increased return for each
measurement. But only to a point: the final fourth of the sources
do not add as much as the first three-fourths but they also do not
probe as many total nodes or edges. The normalized metrics later
will help distinguish this fact.

Figures 3(b) and 3(d) show Rocketfuel’s cumulative node and
edge coverage per target. These results are the most impressive
seen so far. Additional targets yield the same increase in coverage
almost independent of how many targets have been added previ-
ously.

4.2 Novel Ratios
Looking at only cumulative coverage treats all measurements
equally, ignoring differences in size between measurements. A re-
dundant but large measurement may increase the cumulative cov-
erage more than a smaller measurement with a better individual
efficiency. If the size of a measurement is indicative of the cost
of performing that measurement, then efficient smaller measure-
ments may provide higher marginal utility than inefficient larger
measurements.

Novel ratios are computed exactly as one would expect: the
number of new nodes (or edges) found divided by the total number
probed. Obviously, the novel ratio for the first measurement is al-
ways one, so all of the graphs begin with the second measurement.

4.2.1 Skitter

Skitter’s novel ratios (Figures 4(a) and 4(b)) do not provide many
surprises given its cumulative coverage results. Excepting the 18th
and 22nd sources, all of its novel ratios after the 3rd source are
below 11% for edges and 2% for nodes.

4.2.2 Scriptroute

The novel ratios of the Scriptroute data (Figure 5) are similar to
those for the Skitter data. Novelty decreases quickly after the first
few measurements. Interestingly, sources 63 and 66 have unchar-
acteristically large novel ratios and are two of the smaller sources
in the data set (note their corresponding dips in the lowest line in
Figures 2(a) and 2(c)). Compare them to source 36: it also has un-
characteristically high novel ratios but is one of the larger sources
in the set. Coverage continues to increase through both 63 and 66
as much as it does through 36. This supports the intuition that effi-
cient small measurements can be as useful as larger measurements.

The per target ratios also confirm the coverage results: additional
targets have a diminished utility, but they are more valuable than
additional sources.
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Figure 4: Novel ratios per source, Skitter

4.2.3 Rocketfuel

The Rocketfuel novel ratio results shown in Figure 6 are much
more surprising than the Skitter and Scriptroute results. The de-
crease in novelty per source is not as sharp as the others, but
sources still show diminishing returns. Most surprising is the
steadiness of the per target ratios. 641 targets have novel node
ratios over 40%, and 2584 targets have novel edge ratios over 40%.
16 targets see 100% novel nodes and 77 targets see 100% novel
edges.
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Figure 5: Novel ratios, Scriptroute
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4.3 Entropy
Cumulative coverage measures the contribution of each measure-
ment to the final map, and novel ratios estimate the internal utility
of each measurement. But neither of those metrics is easily com-
parable across maps of different sizes built from different data sets
with different numbers of measurements. [1] introduces the idea of
an information theoretic analysis for quantifying the contribution
of individual measurements to a map. After normalizing for dif-
ferences in size, information theoretic metrics express the value of
measurements as expected bits of information to be gained. These
bit values are comparable across any map from any tool. [1] fo-
cuses on relative entropy between two maps (there is more on this
below, in Section 4.4), and we simplify that analysis by also con-
sidering the individual entropy of a single map.

The entropy of a probability distribution A is the mean number
of bits needed to encode each event in the distribution. It is denoted
H(A) and computed as

H(A) =
∑

e

−P (e) log P (e)

where e ranges over each mutually exclusive event in A. The sec-
ond term in the product is the information content of a single event.
The lower P (e) is, the more negative log P (e) becomes, which
supports the intuition that unlikely events carry more information.
The first term weights that raw information content up or down ac-
cording to the probability of the event, and makes the entire sum a
weighted average.

As we have defined them, node and edge coverage are each a
distribution over a single boolean variable. We compute the en-
tropy of those distributions to find the node and edge entropies of
a map. Since entropy is the mean number of bits needed to encode
an event, it is also the expected gain in information after observing
a single event. As a map is built, the entropy of the intermediate
map reflects the expected amount of information to be gained by
adding a new measurement.

The change in entropy as a map is built proceeds in two phases.
First, entropy increases as measurements are added and coverage
increases to 50%. This stage can be seen as initially discovering
that the internet exists and that there is information to be learned
about it. Obviously, we know a priori that the internet exists, but
we have not included that as a prior for our distributions. As such,
the entropy numbers in the first phase are a bit misleading. Never-
theless, the change in entropy still reflects how fast information is
gained.

In the second phase, entropy peaks when coverage is at 50% and
then begins to decline. The moment of peak entropy marks the
measurement after which marginal utility begins to diminish. The
expected number of bits gained by each measurement declines.

It is here that our confidence weights become most relevant.
Clearly, since we use it as our goal, the map built with zero er-
ror probability will end with complete coverage and an entropy of
zero. The maps built with other error probabilities end with non-
zero entropies. Their final entropy values show the number of bits
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Figure 7: Entropy per source, Skitter

(which would contribute to confidence) that could still be gained
from an additional measurement. A higher final entropy reflects a
larger trade-off between discovery and confidence.

To each plot in this section we have added a smooth arc that rep-
resents one theoretical optimum entropy. This arc represents the
entropy of the map if all of its information were spread evenly
across all measurements so that each measurement had a pre-
dictable utility. Note that even under this scenario marginal utility
will still decrease because each measurement contributes a contin-
ually smaller percentage to the growing intermediate map. What
this theoretical optimum maximizes is predictability of return on
effort.

4.3.1 Skitter

Skitter’s entropy (Figure 7) clearly displays its low utility for addi-
tional sources. A change in entropy means that information has
been gained and the underlying distribution has been adjusted.
Skitter’s entropy stays flat across the majority of its sources, be-
traying their poor utilities.

Additionally, note the final entropies of (for example) the map
built with error probability 0.3. 0.11 bits of information about
nodes and 0.22 about edges are expected to be gained from a new
measurement.
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Figure 8: Entropy, Scriptroute
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Figure 9: Entropy, Rocketfuel



4.3.2 Scriptroute

Scriptroute’s per source entropy measurements, shown in Figures
8(a) and 8(c), show that it is more consistent in gaining new infor-
mation than Skitter, but that it gains half of its information within
the first four sources. The gradual decrease in entropy (through-
out for edges, after source 14 for nodes) shows that it is slow to
gather new information after the initial peak. Lastly, there is high
redundancy in node observations but low redundancy for edges, as
shown by the final entropies. If the sensor error probability is 0.3,
0.33 bits of information could be gained about edges by adding a
new source.

Scriptroute’s per target entropies (Figures 8(b) and 8(d)) show
better marginal utility than the per source entropies. Maximum
entropy is still reached early, but the decrease towards certainty is
quicker and has a steepening slope. Because the per target data is a
sub-sample of the per source data, the final entropies are not equal,
but they are close: an expected 0.35 bits of information could be
gained for error probability 0.3.

4.3.3 Rocketfuel

Rocketfuel’s entropies show its greater utility and lower redun-
dancy. Per source, its entropy rises and then falls very quickly,
except for a stretch of unhelpful sources towards the end. It should
be possible to reorder the sources so that the final helpful ones
precede the unhelpful ones, and then to evaluate whether pruning
those unhelpful ones would ultimately be beneficial. The high fi-
nal entropies show Rocketfuel’s low redundancy. 0.55 bits could
be gained about edges from another source, if the error probability
is 0.3.

Rocketfuel’s per target entropies support the conclusion seen so
far that targets have higher utility than sources. Rocketfuel’s per
target entropy curves come closest to the theoretical optimum, and
they do not show any stretches of low information gain like the per
source entropies.

4.4 Kullback-Leibler Divergence
The metric used in [1] to estimate the marginal utility of additional
measurements is Kullback-Leibler divergence. K-L divergence1

expresses the average number of extra bits needed to encode a sys-
tem according to an incorrect probability distribution for the sys-
tem.

K-L divergence, denoted KL(A||B), is the relative entropy be-
tween two different distributions, A and B, over the same set of
events. It can be derived from entropy as follows, where A is the
true distribution, B is the incorrect distribution, and PD(e) denotes

1Sometimes called K-L distance, though it is not symmetric and does not obey
the triangle inequality, and thus is not a strict distance metric.

the probability of event e according to distribution D:

H(B)−H(A) '
∑

e

−PB(e) log PB(e)

−
∑

e

−PA(e) log PA(e)
(4)

'
∑

e

PA(e) log PA(e)− PB(e) log PB(e) (5)

=
∑

e

PA(e) log PA(e)− PA(e) log PB(e) (6)

=
∑

e

PA(e)(log PA(e)− log PB(e)) (7)

KL(A||B) =
∑

e

PA(e) log
(

PA(e)
PB(e)

)
(8)

Recall that the formula for entropy multiplies the information con-
tent of an event by the event’s probability in order to appropriately
weight the event’s information against the information of all pos-
sible events. From that it follows that the probability used for the
weighting must be the true probability. Equation 6 is derived from
5 by replacing, in B’s entropy, the incorrect probability with the
true probability while keeping the incorrect information estimate.
This is also why equations 4 and 5 are only written as approxi-
mate equalities. K-L divergence is always positive and it is zero
for equal distributions.

For our study we calculate the K-L divergence between the final
map that would be constructed if there were zero sensor error and
the intermediate map constructed as a measurements are added.
This is equivalent to the metric called “offline utility” in [1], except
that our addition of non-zero error probabilities means that some
maps will not reach zero K-L divergence after all measurements
have been added.

In this context, what K-L divergence shows is the number of
bits needed to transform the intermediate distribution into the final
distribution. A large drop in K-L divergence after a measurement
corresponds to a large gain in information from that measurement.
Thus, the marginal utility of a measurement can be estimated by
the drop in K-L divergence provided by that measurement. These
graphs provide the best “at a glance” estimate of the marginal util-
ity per measurement.

To each of the graphs in this section we have added a line show-
ing the K-L divergence of the same theoretical optimum as the opti-
mum in the entropy graphs: the division of all information equally
between measurements. The further below this line the actual K-L
divergence dips, the lower the marginal utility of succeeding mea-
surements.

4.4.1 Skitter

Skitter’s per source K-L divergences are shown in Figure 10. The
level portion has the same interpretation as entropy: no informa-
tion is being gained. That Skitter’s K-L divergence exceeds the
optimum shows that its fast early gain in information has tipped
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Figure 10: KL Divergence per source, Skitter

beyond inefficiency into wastefulness: utility has diminished so
greatly as to not be worth any effort.

4.4.2 Scriptroute

Scriptroute’s K-L divergence (Figure 11) clearly shows the util-
ity intuitively expected for such an exhaustive mapping technique.
The information that can be gained with each successive measure-
ment falls very rapidly. Note that while that trend is true of both
the per source and per target divergences, the per target ones have
higher absolute values and are closer, though still below, the opti-
mum curve.

4.4.3 Rocketfuel

The K-L divergence for Rocketfuel shown in Figure 12 shows
much greater utility than the divergences for either Skitter or Scrip-
troute. Rocketfuel’s per source divergence shows as much mar-
ginal utility as Scriptroute’s per target divergence. Even greater
than that is Rocketfuel’s per target utility. Its divergence curves—
particularly its per target edge divergence—are the closest to opti-
mum of all three tools. Rocketfuel appears to live up to its promise
of improved efficiency.

5 Discussion
The first conclusion to be drawn from the node and edge coverage
analyses is that adding targets yields more additional information
than adding sources. However, it is also interesting to note that
while node coverage quickly levels off as the number of sources
increases, there is always some gain in edge coverage. This implies
that adding sources “fills in” the links between nodes in the graph.

It is also interesting to observe that Rocketfuel continues to gain
relatively more coverage as sources are added. This result could
come about for two reasons. It could be that adding a source gives
a different perspective on the network and thus more information.
Or, since sources and targets are chosen together in Rocketfuel, it
could be that adding a source causes more targets to be explored,
and that these new targets are disjoint from the rest. This is a ques-
tion for future exploration.

The novel node and edge ratios are also very surprising for Rock-
etfuel. Each source added seems to be gaining many new nodes and
edges. We believe that this is a result of the intelligent route selec-
tion mechanism used by Rocketfuel. By considering ingress and
egress points, Rocketfuel is able to add, for a source, the targets
that it expects will explore parts of an ISP that have not been pre-
viously observed. This does appear to be effective. The entropy
measures also reflect this conclusion about Rocketfuel.

In general, our analysis of entropy brought up some interesting
observations as well. First we notice that each tool gains infor-
mation quickly in the beginning of its run. This is expected, to
some degree, since the first few traceroutes will pick up the local
topology and this will always be redundant in future traceroutes.
However, even in light of this, it is surprising how close the entropy
graphs of Rocketfuel and Scriptroute are to the optimal—especially
when considered per target.

The K-L divergence plots show how poor the Skitter data is.
The plot goes above the optimal which means that for a long time
it is getting much less information than is expected as sources are
added—implying that sources 3 through 17 are all redundant.

Our experiments with confidence weighted maps also provide
interesting insights. We can look at the separation between maps
built with different error probabilities to get an idea of how redun-
dant the observations are. We see that the Skitter plots remain the
least separated under varying error probabilities. This suggests that
there is a large amount of overlap in the observations made by Skit-
ter. A conclusion supported by the fact that there are many sources
whose observations add nothing new to coverage.

Scriptroute is more spread than Skitter, but less than Rocketfuel.
From Figure 2(a) we can see that every Scriptroute source added
explores about half of the nodes in the graph and a quarter of the
edges. This supports the conclusion that there is a great deal of
redundancy.
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Figure 11: K-L divergence, Scriptroute
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Finally, we see that Rocketfuel’s plots are very spread out for
different error probabilities. We believe this means there is not a
lot of redundancy in its observations. While this is good because it
reduces the total number of observations needed, it also reduces the
confidence in the final graph. For small enough error probabilities
this does not matter, but depending on the accuracy required this
could be an issue. If we were attempting to map a noisier network
(e.g. something ad-hoc) then the error probability could be high
enough to have an effect.

6 Related Work
There has been quite a bit of previous work related to mapping
the internet effectively. All these methods attempt to validate their
results by comparison to previous mapping methods. Our work is
different in that we simply try to quantify the efficiency of each sys-
tem in terms of the amount of information they gain with respect to
the effort they expend. Spring et al. [6] attempted to produce high
level maps of network connectivity for determining path inflation
in the internet. While they do map the internet, they are not overly
concerned with the efficiency of their mapping.

In [5] the goal was to create complete and accurate maps. How-
ever, they only evaluate how accurate their final maps are, ad the
reduction in measurements needed to produce the entire map (as
compared to Skitter) but they do not examine the utility of the in-
dividual measurements that they took.

Even earlier work on internet mapping is that of Pansiot and
Grad [3] who discovered that most of their map could be made
using only a handful of sources. We confirm this results for two of
our data sets. However, we agree with [5] in that the Rocketfuel
does gain additional data from adding more sources. Neither of
these studies looked at the effect of including confidence weighting
in the results.

Our analysis work derives directly from that of Barford,
Bestavros, et al., as evidenced by our frequent citation of [1]. They
were the first to attempt to quantify the marginal utility of sources
and targets for building an internet map. However, their work fo-
cuses only on a single set of data (12 Skitter sources), while our
work examines data from three different internet mapping tech-
nologies that each use a different technique for mapping. We also
extend their analysis to include confidence weighting and to show
how that weighting effects the marginal utility results.

7 Future Work

7.1 Enhanced Models
Our current mapping model is very preliminary. As in previous
efforts, we consider each traceroute as a single, unredundant ob-
servation. In actuality, most traceroute implementations contain
redundancy of their own—typically three retries per hop. We could
integrate the redundancy information from traceroute directly into
our confidence calculations.

Also, many times there are missing hops in the traceroute data
that need not be entirely ignored. If, for example, on some path
node 6 does not respond to traceroute but nodes 5 and 7 do, we
can still infer the existence of node 6, and that it has links to nodes
5 and 7. Furthermore, if 5 and 7 are within the same ISP, we can
assign to 6 a probability for also being in the same ISP, and we
could even use the DNS names of 5 and 7 to attempt to guess the
name of 6. So simply ignoring any node that does not return its
name and address throws away information.

Now that we have introduced a model that can accept proba-
bilities and incomplete observations, we could take this additional
information into account to improve the results of mapping.

7.2 New Analyses
The analyses presented in this study are compatible with those from
[1], but with our expanded representation many new ones are now
possible. [1] only represented the entire map with the probability
that a single node or edge had already been included in the map.
We represent each node and edge with its own probability of exis-
tence, and represent the map as the mean of these probabilities.

Thus, in addition to computing entropy and K-L divergence cal-
culations over the mean probability, we could compute them sep-
arately for each node and edge and then take the mean of those
results—in other words, the mean of the entropies, not the entropy
of the mean. We could even compute the full joint probability of
all nodes (or edges), and take the entropy of that—but summing
over the joint would involve 2|V | terms. Which leads to the ques-
tion of whether the joint could be factored according to conditional
independences in the node and edge distributions, and what those
independences might imply.

Clearly, the greater degrees of freedom provided by a probabilis-
tic model open many more avenues for exploration.

7.3 Time Decayed Confidence
Currently we assume that the total number of observations of a
node or edge signify our confidence in its existence. Unfortunately,
in the limit of increasing observations, links caused by noise will
eventually gain high confidence. Also, we have no way to account
for nodes or edges that later permanently disappear. It should be
the case that the longer we do not see a node or edge, the more our
confidence in its existence should decrease. In order to add this de-
cay to our confidence it is necessary to collect statistics regarding
the periodicity of mapping runs. That is, how long it takes to pro-
duce a complete map. This is difficult to know since the true map
is unknown, but we can still define an approximate periodicity by
using our existing information theoretic metrics to determine when
coverage is reaching saturation.

To that we could add prior belief about the ephemerality of nodes
and edges. The fringes of the map are more dynamic than the core,
so we could use our topology results to classify nodes and then use
that classification to re-weight our confidence.
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Figure 13: Skitter data, day 1, random ordering
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Figure 14: Skitter data, days 2 and 3, greedy heuristic ordering

7.4 Heuristic Reordering
We believe that statistics about the utility of measurements can be
used as a prior for selecting and predicting the benefit of future
measurements. As a preliminary look at this hypothesis we con-
ducted an experiment that took one day of the Skitter data and
examined the node coverage per source. We then reordered the
sources for the second and third day of the data according to their
contribution to node coverage on the first day.

The resulting effect on performance is impressive. Figure 13
shows the node coverage per source if reordering isn’t done and
Figure 14 shows the result if reordering is done. We can see that
we immediately get almost all the nodes and can greatly reduce the
number of measurements by using only a small number of sources.

7.5 Cost and Benefit
Finally, though we alluded to it in Section 4.2, most of our analy-
sis (as well as earlier ones) ignore the cost of measurements. It is
assumed that adding a new source is difficult, but this is not always
the case. A system such as Scriptroute can gather data on many
sources almost as easily as it can on a single source. Addition-
ally, the study for which the Scriptroute data was initially gathered
placed a high benefit in approaching 100% edge coverage. For

them, the diminished utility was worth the low cost of additional
measurements.

For other uses, such as automatically constructed maps used for
overlay networks, the point at which additional measurements are
not worth their cost may come sooner. Quantifying the cost of
measurements in addition to their utilities would also be a useful
analysis.

8 Conclusion
Our work has yielded many important observations and results re-
garding internet mapping.

• We were able to quantify the utility of adding sources and
targets for several internet mapping systems.

• We have confirmed past results showing that adding targets is,
in general, more beneficial than adding sources. This is true
for all of the mapping systems examined. In fact, in the Skitter
and Scriptroute data we found that almost all information is
gained from the first few sources.

• Unlike in the Skitter and Scriptroute data, adding more
sources continues to add information for the Rocketfuel sys-
tem, with returns diminishing much more slowly.

• We have proposed a confidence weighting scheme to combat
the inherent error in mapping observations.

• We have found that there is much more redundancy in the
Skitter and Scriptroute data than in the Rocketfuel data. This
means that these first two systems are much more robust in
the face of error; however, this comes at the cost mapping
efficiency.
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