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We evaluate pathchar, a tool that infers the characteristics 
of links along an Internet path (latency, bandwidth, queue 
delays). Looking at two example paths, we identify circum- 
stances where pathchar is likely to succeed, and develop 
techniques to improve the accuracy of pathchar’s estimates 
and reduce the time it takes to generate them. The most 
successful of these techniques is a form of adaptive data col- 
lection that reduces the number of measurements pathchar 
needs by more than 90% for some links. 

1 Introduction 

pathchar is a new tool, written by Van Jacobson at Lawrence 
Berkeley Laboratory (LBL), that tries to infer the character- 
istics of individual links along an Internet path by measuring 
the round trip time of packets sent from a single host. An 
alpha version of pathchar is available for FreeBSD, Linux, 
OSF and Solaris from ftp://ftp.ee.lbl.gov/pathchar/. 
We explain the basic mechanism and evaluate its accuracy 
on two paths whose link characteristics are known. 

Based on these observations, we propose techniques to 
improve the accuracy of pathchar and to reduce the num- 
ber of measurements (and time) it takes to generate its es- 
timates. The contributions of this paper are 

Using pathchar’s verbose option we collected measurements 
of two paths, one from rocky.colby.edu (on the campus of 
Colby College in Waterville, Maine) to emerald.mint.net 
(also in Waterville), the other from rocky to mach5.sdsc.edu 
(at the San Diego Supercomputer Center). We refer to these 
as the MINT and SDSC datasets. 

Based on pathchar’s documentation, we wrote a pro- 
gram that processes these datasets and generates estimates 
of the link characteristics. This software allows us to test 
alternatives and extensions to pathchar’s techniques using 
the same data. 

l An evaluation of pathchar and some insight into when 
it can or can not be expected to be useful. 

l A technique for generating intervals for the estimates 
pathchar generates. Although these intervals do not 
always contain the nominal (correct) values, their size 
conveys useful information about the accuracy of the 
estimates. 

Our example paths, and the 11 links that comprise them, 
are not intended to be a statistical sample of the Internet 
(cf. Psxson’s empirical studies [3, 41). But the structure of 
these paths is probably typical of many-a fast local network 
connected through a comparatively slow link to the Internet 
proper, connected to the destination site through another 
LAN. We expect our experiences to be applicable to a large 
class of potential pathchar users. 

2 Background 

l A technique for determining dynamically the number 
of measurements needed to achieve a given interval 

Van Jacobson presented pathchar at the Mathematical Sci- 

size. 
ences Research Institute (MSRI) in April 1997 [l]. The fol- 
lowing description is based on slides he presented there. 

Like traceroute’ , pathchar takes advantage of the time- 
to-live field (ttl) in an IP packet. The ttl determines how 
many links a packet can traverse before it expires. If a router 
receives a packet that has expired, it drops the packet and 
sends an ICMP error packet back to the sender. The source 
address of the error packet indicates which router the out- 
going packet reached before expiring. By setting the ttl to 
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Figure 1: Network model. 

1.1 Methodology 

‘For a survey of network measurement tools including traceroute 
see the Cooperative Association for Internet Data Analysis (CAIDA) 
web page http: //wuw . caida. erg/Tools/ 
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Figure 2: Scatterplot of round trip times versus packet size, 
45 sizes, 64 probes each. The vertical axis is on a log scale, 
which is why the lower envelope appears convex, although 
it is a nearly straight line. 

a value n, it is possible to find the address of the nth router 
in the path. 

pathchar works by sending out a series of probes with 
varying values of n and varying packet sizes. For each 
probe it measures the time until the error packet is received. 
By performing statistical analysis of these measurements, 
pathchar infers the latency and bandwidth of each link in 
the path, the distribution of queue times, and the probabil- 
ity that a packet is dropped. 

The analysis is based on the network model in Figure 1. 
Before a packet leaves the (n - 1)th node, it waits in queue 
to get onto the outgoing link. The time it spends on the 
network-transit time-is a linear function of the packet 
size, where the two parameters are the latency and band- 
width: lat + sizelbw. 

At node n, the packet waits in queue again until the 
router processes it and generates the error packet. The error 
packet waits in queue at node n, then returns to node n - 1 
with transit time lat + errorsiae/bw, where errorsire is 
the size of the ICMP error packet (56 bytes [5]). 

Finally, it waits in queue at node n - 1. The round trip 
time (rtt) from the (n - 1)th to the nth node and back is: 

rtt = q1 + (Zat + packet-sitefbw) + qz + forward 

+ q3 + (Zat + errorsize/bw) + q4 (1) 

where the values qi are random variables representing the 
queue times and forward is the time it takes the forwarding 
engine to process the packet. 

To simplify this expression pathchar makes three as- 
sumptions: (1) the size of the error packet is small enough 
that errorsizelbw is negligible, (2) the forward time is neg- 
ligible, and (3) if we make a large number of measurements 
of a given path, eventually one of the probes will make the 
round trip with negligible queue delays. Eliminating the 
negligible terms yields: 

rtt = (lat + packetsize/bw) + lat (2) 

Figure 3: Shortest observed round trip time (SORTT) ver- 
sus packet size. The line shows the linear least squares fit 
to the data. 

This equation is the basis of the analysis pathchar uses to 
estimate link characteristics. 

2.1 Statistical analysis 

This section uses a sample data set to demonstrate the anal- 
ysis pathchar performs. We use the following terms to refer 
to various data structures. 

probe: a single measurement of an rtt for a given packet 
size and number of hops. 

Sample: a set of probes with a given packet size. 

Link: a set of Samples pertaining to a given link, spanning 
a range of packet sizes. 

Path: a set of Links pertaining to a given path, in order 
from origin to destination. 

Sample, Link, and Path are written with upper-case let- 
ters to indicate that they refer to a data structure, and to 
avoid confusion with their common use. 

Minimum-filtering 

Figure 2 shows a scatterplot of 2880 probes at 45 different 
sizes, from 120 to 1528 bytes, taken from the 6th link of the 
SDSC dataset. Each point represents a single probe; each 
column represents a Sample; the whole graph represents one 
Link. 

Within each Sample, pathchar uses the shortest observed 
rtt to estimate the minimum possible rtt. Because we use 
the phrase “shortest observed rtt” frequently, we abbreviate 
it SORTT. 

In each column there are many data points near the min- 
imum, suggesting that packets have a reasonable chance of 
traversing the path without delay. This observation implies 
that pathchar can find the minimum rtt with a small num- 
ber of probes at each packet size. 

242 



Shortest observed rtt 

ms (first 8 links of SDSC dataset) 

Distribution of queue delays 

(fraction of probes with delay c t) 

30 - < 

7 

25 - 6 

20 - 

15 - 

10 - 

1200 1500 

Packet size 

Figure 4: Shortest observed round trip times (SORTTS) for Figure 5: Distributions of cumulative queue delays, SDSC 
the first 8 links of the SDSC dataset. dataset. 

The SORTTs from each column, plotted in Figure 3, 
form a straight line, in accordance with the two-parameter 
model of transit times (Equation 2). 

Curve-fitting 

Because the data fall so close to a line, it is easy to estimate 
parameters by a least squares fit. The interpretations of 
these cumulative parameters are: 

l the latency from the first node to the nth node and 
back, and 

l the marginal cost of sending an additional byte along 
the outgoing path. 

Figure 4 shows the SOR.TTs for the first 8 links of the SDSC 
dataset. The line labeled 6 is the same line shown in Fig- 
ure 3. In each case, the data fit a straight line well. 

Differencing 

The nice thing about the cumulative parameters is that they 
add: the parameters of a path are the sum of the parameters 
of the links. Thus, given estimated cumulative parameters, 
pathchar finds link parameters by subtraction. 

For example, to find the latency of the 6th link, we sub- 
tract the intercepts of line 6 and line 5 (9.88 ms - 2.22 ms = 
7.66 ms). According to Equation 2, this difference is equal 
to twice the latency, so the estimated link latency is 7.66/2 
= 3.83 Ins. 

To find the bandwidth, we subtract the two slopes (9.61 
,us/B - 4.02 ,LJS/B = 5.6 ps/B). According to Equation 2, 
this difference is the inverse of the bandwidth, so the esti- 
mated link bandwidth is 1.43 Mb/s. 

Deconvolution 

If we assume that the SORTT in each column is the mini- 
mum possible rtt, then the additional time the other probes 
spend must be due to queueing and other nondeterministic 
delays. 

0.8 

0.6 

t 0-W 

Once pathchar fits a line to the SORTTs, it calculates 
the minimum possible rtt for each packet size and sub- 
tracts it from each probe. Aggregating these excess times, 
pathchar estimates the distribution of the total queue delay 
along the path to the nth node and back. 

Figure 5 shows these distributions (empirical cumulative 
distribution functions) for the SDSC dataset. The vertical 
gray line is at 0.5 ms; where the distributions cross this line 
indicates the probability of observing an rtt within 0.5 ms 
of the minimum. As the length of the path grows, this prob- 
ability drops quickly. This probability is relevant because it 
indicates how many probes arc necessary to see an rtt near 
the minimum. 

These distributions are cumulative, but unlike the cumu- 
lative parameters, they do not add in a simple way. Rather, 
each distribution is the convolution of the distributions for 
the prior links. In Section 7 we address the problem of dc- 
convolving them. 

2.2 Accuracy 

Using pathchar’s techniques we estimated characteristics of 
the first 8 links of the sample path (Table 1). We chose 
the first 8 links because they provide examples of some of 
pathchar’s successes and failures while avoiding some com- 
plications in the subsequent links. We address the compli- 
cations in Section 3.3. 

The first 5 links are lOMb/s Ethernets on Colby’s cam- 
pus. In each case, pathchar’s estimate is within 4% of the 
nominal value. 

The next link is the Tl that connects Colby to the rest 
of the world. The estimated bandwidth, 1.43 Mb/s, is rea- 
sonably close to the nominal bandwidth, 1.536 Mb/s. It is 
surprising that it is not. more accurate, though, since it is 
generally easy to measure the bandwidth of a slow link. 

The link from bordercore to core4, according to an 
MCI representative, is an OC-3 with nominal bandwidth 155 
Mb/s. Actually, OC-3 links are implemented as 3 distinct 
OC-1 bitstreams at 51.8 Mb/s. Each packet is sent down 
one of the three pipes in round robin fashion. Thus, from 
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link host address latency bandwidth nominal 

-i- 
est. (ps) est. (Mb/s) bandwidth 

hub.colby.edu 137.146.194.17 328 9.74 10 
2 routing.colby.edu 137.146.238.194 222 9.93 10 
3 network.colby.edu 137.146.238.209 116 10.1 10 
4 general.colby.edu 137.146.112.132 220 9.65 10 
5 routing.colby.edu 137.146.238.146 223 10.4 10 
6 bordercore2.cht.mci.net 166.48.64.25 3.83 ms 1.43 1.536 
7 core4.WestOrange.mci.net 204.70.4.77 2.41 ms 71.3 3 x 51.8 
8 sprintbnap.WestOrange.mci.net 204.70.10.226 1.45 ms 24.1 44.7 

Table 1: Estimated latencies and bandwidths of the first 8 links of the SDSC path, with nominal bandwidths reported by the 
network service provider. 

pathchar’s point of view it is impossible to distinguish an 
OC-3 from and OC-1 or an OC-12. Nevertheless, pathchar 
can estimate the bandwidth of the OC-1, although in this 
case it is not very accurate (38% too high). 

The next link is a DS3, which is also made up of a number 
of parallel pipes (28 DSls, which are themselves made up of 
24 DSOs). In this case, though, the packet is broken into 
parallel bitstreams, so that the bandwidth experienced by 
a single packet should be the nominal bandwith of the link, 
44.7 Mb/s. Again, the estimate is not very accurate (46% 
too low). 

2.3 Noise 

These examples demonstrate the fundamental difficulty of 
pathchar-the higher the bandwidth, the harder it is to 
measure. The estimated bandwidth is based on the slope of 
the rtt curve, which captures the difference between the rtt 
of the largest and smallest packets. The higher the band- 
width, the smaller this difference. 

Looking at the 6th and 7th hops, we see that the dif- 
ference between the rtt for the largest and smallest packets 
is small compared to the noise in the data. The estimated 
slopes of the lines are 9.614 and 9.726 ps/B, so the difference 
between them is only 0.112 ps/B, meaning that the differ- 
ence between the rtt of the smallest and largest packets is 
only about 150 ,us. By comparison, the largest outlier in 
Figure 3 is 175 ps from the fitted line. 

This problem is compounded by the need to subtract 
adjacent estimates. In general, the calculated difference be- 
tween estimated values is less accurate than the values them- 
selves. As a result, the accuracy of the estimated slopes 
needs to be considerably better than the accuracy required 
for the estimated bandwidths. 

To make matters worse, minimum filtering amplifies mea- 
surement error by selecting extreme values. We tried several 
techniques to mitigate this effect: 

l Instead of using the minimum from each Sample, we 
tried other summary statistics, including the 2nd per- 
centile. 

l For the curve-fit, we used iteratively-weighted least 
squares (IWLS) to dilute the effect of outliers. 

l We tried to model the distribution of queue times and 
estimate the minimum round trip time as a parameter 
of the distribution model. 

None of these techniques reliably improved pathchar’s band- 
width estimates. This problem is the focus of our ongoing 
work. 

3 Modeling errors 

Like all models, pathchar’s network model omits many de- 
tails of the real world. This section discusses some of them 
and their effect on the estimates. 

3.1 Omissions that affect latency 

One omission we have already mentioned is the assumption 
that the size of the error packet is negligible. As a result 
the latency estimates are a little too high. Given the actual 
size of the error packet, it is easy to adjust the estimated 
latency by subtracting errorsizelestimatedbanduridth. In 
most cases this adjustment is insignificant. 

A second omission is the assumption that forwarding 
time is negligible. Actually, since pathchar’s estimates are 
based on the difference between measurements, forwarding 
time drops out as long as it is the same for all routers. Only 
the variation in forwarding time from router-to-router will 
alfect the estimated latency. 

A related issue is the possibility that forwarding time 
varies over time. Possible causes of variation include MAC 
delays and time the router spends processing updates. These 
transient delays will be eliminated by minimum filtering as 
long as they occur infrequently. 

A more serious problem is the possibility that the return 
path is not the same as the outgoing path. In this case, it 
is no longer true that the two latencies in Equation 1 are 
the same. As a result, the estimated latencies can be wildly 
wrong. Unfortunately, pathchar can neither detect nor deal 
with this possibility. 

Most of these factors do not alfect pathchar’s bandwidth 
estimates because they do not discriminate between large 
and small packets. 

3.2 Omissions that affect bandwidth 

One problem that we have already mentioned is the exis- 
tence of links that are made up of parallel pipes. If these 
links put a whole packet into one pipe, rather than dividing 
it up, they will appear to have the bandwidth of a single 
pipe. 

Another problem is caused by probes that exceed the 
MTU of a link. The MTU is the Maximum Transfer Unit, 
the largest packet that can be sent without being fragmented. 
A probe that exceeds the MTU will be fragmented into some 
number of smaller packets, and an error packet will be sent 
as soon as the first packet arrives at the nth router. The re- 
sulting rtt curve levels off at the MTU, distorting the curve- 
fit and tending to make the bandwidth estimate too high. 
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Setting the don’t fragment flag of the outgoing packets 
does not help, since it does not cause the packet to exceed 
the MTU of a link; rather, it causes an ICMP Unreachable 
Error (Fragmentation Required) at the first link whose MTU 
is exceeded [5]. 

3.3 Route alternation 

A final factor that is omitted from pathchar’s model, and 
that causes significant problems, is route alternation. Route 
alternation is the tendency for the path between two hosts 
to change over time, typically oscillating over a small set 
of possibilities. Paxson has shown that route alternation 
is common on the Internet, [4]. Rapidly-oscillating routing 
can make it impossible for pathchar to generate useful esti- 
mates, not only for the oscillating link but also for the links 
beyond it. The reason is that once pathchar has character- 
ized the (n - 1)th link of a path, it assumes that all mca- 
surements of the lath link follow the same first 11 - 1 links. 
If that is not the case then subtracting the characteristics of 
the two links becomes meaningless. 

Fortunately, Paxson found that the majority (91%) of 
Internet routes persist for hours, long enough for pathchar 
to make its measurements. Unfortunately, there are a sig- 
nificant number of routes that alternate more quickly, and 
these routes do create problems. For example, the 9th link 
of the path from Colby to SDSC alternates among at least 
three routes. The current version of pathchar tries to char- 
acterize the first route it finds, and rejects probes that follow 
another route. If it happens to encounter a low-probability 
route first, it can waste a lot of probes. Also, if the route it 
characterizes is not the shortest route, estimates for subse- 
quent links might be inaccurate. This problem affected the 
SDSC dataset, and is the reason we restricted the discussion 
to the first 8 links. 

4 Interval estimates 

It is always dangerous to generate estimates without confi- 
dence intervals, and especially so for pathchar, since some 
estimates are much more accurate than others. 

Although the linear least squares fit described in Sec- 
tion 2.1 produces error estimates for the parameters, these 
estimates have no statistical meaning in the context of the 
estimated network characteristics. The least-squares fit only 
“knows” about the SORTT for each packet size; it doesn’t 
take into account how many probes were sent or what the 
probability was of traversing the path without incurring any 
qucuc delays. Developing a statistical model that uses this 
information to generate an error bound would be formidable. 

An alternative is to use a technique from non-parametric 
statistics: divide a large sample into smaller samples, and 
look at the variation in the estimated parameters among the 
subsamples. 

Using the same data from the previous section, we di- 
vided each Sample into two, containing the even- and odd- 
numbered probes. Each subsample contains 32 probes at 
each of 45 sizes for each link. When we calculate the differ- 
ence between adjacent Links, we get four estimates for each 
parameter by taking 

l the difference between the even samples, 

l the difference between the odd samples, 

l the difference between the evens from one and the odds 
from the other, and vice versa. 

link low bw high bw 
W/s) (Mb/s) 

9.68 9.78 
9.85 10.1 
10.0 10.2 
9.65 9.86 
9.96 10.4 
1.42 1.43 
56.5 72.4 
23.5 36.6 

nominal bw 
(Mb/s) 

10 
10 
10 
10 
10 

1.536 
3 x 51.8 

44.7 

Table 2: Intervals for the estimated bandwidth of the first. 
8 links of the SDSC dataset. 

Taking the largest and smallest estimatess of the four, we 
form an interval for the estimated characteristics. 

Table 2 shows the intervals for the bandwidth of the first 
8 links of the path. The intervals for the first 5 links are 
narrow (less than 4% of the estimated value), indicating that 
the estimated value is consistent, if not perfectly accurate. 
In some cases, but not all, the interval contains the nominal 
bandwidth of the link. The estimated bandwidth of the Tl 
(link 6) is very consistent, although somewhat lower than 
the nominal bandwidth (1.536 Mb/s). 

The difficult links, as before, are the OC-3 and the DS3. 
The good news is that the intervals correctly indicate that 
these estimates are not accurate. The width of the interval is 
31% of the nominal value in one case and 29% in the other. 
The bad news is that in both cases the interval does not 
contain the nominal bandwidth. Thus, while these intervals 
give some measure of the uncertainty of the estimates, they 
are still somewhat optimistic. 

In Section 6 we use these intervals as a criterion for con- 

vergence, in order to choose the number of probes at each 
link adaptively. 

5 More sizes vs. bigger samples 

With a given number of probes, it is not obvious whether it 
is better to make measurements of a wide variety of packet 
sizes or to make a large number of measurements at each 
size. The advantage of a large number of measurements is 
that there is a better chance of observing the minimum pos- 
sible rtt. The advantage of making measurements over many 
packet sizes is that more data points are used for curve- 
fitting (and fewer are discarded by minimum-filtering). 

To evaluate this tradeoff, we collected a large datsset and 
divided it into subsamples in various ways, using different 
packet sizes and different numbers of measurements. The 
MINT dataset contains 512 probes at each of 64 sizes, from 
88 to 1348 bytes. The measurements were made between 
Tuesday 7 July, 1998 at lo:39 EDT and Wednesday 8 July, 
1998 at 03:59 EDT. Table 3 shows the links along this path 
and the estimated bandwidth for each. 

We divided the data into 16 subsets along several dif- 
ferent axes. In one case we use all 64 packets sizes, but 
divide the probes into 16 sets (by taking every 16th probe). 
In another case we use only 4 different sizes, but keep all 
512 probes at each size. The headings in Table 4 show the 
various ways to partition the datsset; for example, 4x512 
means 4 sizes and 512 probes per size. 

For each data subset, we estimated the bandwidth for 
each link, and then calculated the relative error for the 16 
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-- 
link 

-- 
1. 
2 
3 
4 
5 
6 
i 
8 
9 
10 

host address 

hub.colby.edu 137.146.194.17 
network.colby.edu 137.146.238.194 
router5.colby.edu 137.146.238.210 
routerl.colby.edu 137.146.112.209 
general.colby.edu 137.146.112.132 
network.colby.edu 137.146.238.146 
bordercore2.cht.mci.net 166.48.64.25 
bordercorel.Boston.mci.net 166.48.60.1 
mint.Boston.mci.net 166.48.60.18 
emeraldmintnet 204.254.98.9 

Table 3: Estimated characteristics of the MINT path. 

link 4x512 8x256 16x128 32x64 64x32 
1 m7T 3.0% r 7zRr ?223-%- 
2 1.8 2.1 1.1 0.83 0.85 
3 2.9 1.7 1.8 1.6 1.4 
4 4.6 3.7 2.5 2.0 1.3 
5 4.5 3.2 3.0 2.4 1.9 
6 4.9 3.8 3.7 2.4 2.9 
7’ 1.2 1.0 0.88 0.47 0.49 
8 252 69 564 60 42 
9‘ 2.7 1.5 1.8 0.77 1.1 

latency bandwidth nominal 
est. (ps) est. (Mb/s) bandwidth 
323 9.68 10 
219 10.1 10 
195 10.0 10 
115 9.9 10 
209 9.8 10 
218 10.1 10 
3.68 ms 1.43 1.536 
108 56.7 3 x 51.8 
3.37 ms 1.43 1.536 
78 8.8 10 

subsets, where the relative error is the absolute difference 
between the estimated and nominal bandwidth, divided by 
the nominal bandwidth. Each entry in the table is the aver- 
age of the 16 errors. For the first link in the path, the 4x512 
dataset yields estimates that are off by 3.1% on average; the 
64x32 dataset is off by 2.8% on average. 

The remaining links are similar-the datasets that use 
more packet sizes consistently yield better estimates than 
the ones that have more probes at each size. The discrep- 
ancy is particularly significant for the 8th link, which is an 
OC-3. The errors for this link are bigger across the board 
than for the other links, but the best estimates come from 
using many packet sizes. 

The last link is omitted from this table because of what 
seems to be a bug in the alpha version of pathchar. For this 
link, pathchar used a different set of packet sizes than it 
used for the other links. This discrepancy does not affect the 
other calculations, but it does break our system for splitting 
the data into subsets. 

We performed a similar experiment with the SDSC path 
and found similar results-more sizes is better than more 
probes per size. 

5.1 Consistency 

This experiment also gives us an opportunity to evaluate the 
consistency of pathchar’s measurements. Using the 32x64 

Table 4: Mean relative error of the bandwidth estimated 
for the MINT dataset. Each column represents a different 
way of partitioning the data. The heading 4x512 indicates 
a dataset with 4 packet sizes and 512 probes at each size. 
The lowest value in each row appears in bold. The asterisks 
indicate that these errors are based on the median estimate 
rather than the nominal bandwidth (see Section 5.1). 

dataset, we examined the 16 estimates for each link. In 
general, estimates for low bandwidth links are more accurate 
and more consistent. For example, the 16 estimates for the 
second Ethernet are: 

9.82 1 9.93 1 9.94 1 9.95 1 9.98 1 9.99 1 10.0 1 10.0 
10.1 I 10.1 I 10.1 I 10.1 I 10.1 I 10.1 I 10.2 I 10.2 

The largest and smallest values differ by less than 4%. 
For the OC-3 (link 8) the estimates are: 

31.4 I 33.8 I 38.9 I 39.2 I 43.1 1 44.0 I 46.6 ( 51.9 
65.1 I 83.5 I 86.6 I 99.8 1 111 I 115 I 117 ( 148 

The median of these values, 58.5 Mb/s is close to the nomi- 
nal value of the OC-1 pipes that make up the OC-3, which is 
51.8 Mb/s. Nevertheless, the range is large, indicating that 
a single estimate with this sample size is unreliable. 

The measurements of the Tls (links 7 and 9) are inter- 
esting because they are very consistent, within 4% of 1.43 
Mb/s, but not accurate. The nominal bandwidth is 1.536 
Mb/s. 

Our conclusion is that these links are not providing the 
nominal bandwidth, but we have no explanation for this 
behavior. Framing bits were a likely suspect, but they are 
already accounted for in the nominal bandwidth (the line 
rate is 1.544 Mb/s). In Table 4, where we compare the 
accuracy of different sample sizes, we use 1.43 Mb/s as the 
nominal value for the two Tl links. 

5.2 Latency 

So far we have said little about the accuracy of the latency 
estimates, since end-to-end latency is the sum of several fac- 
tors and we do not have nominal values for the links we 
measured. 

On the other hand, there are a number of links that ap- 
pear in both sample paths. We can use these measurements 
to assess the consistency of the estimates, if not their accu- 
racy. In each case, the two measurements differ by less than 
5%. 

In both paths the latency of the first link is higher than 
the latency of the other Ethernets. The excess, about 100 
p.s, might be the time it take the router to generate the 
ICMP error packet. For the subsequent links, this time is 
eliminated by subtraction of adjacent latencies. 
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1 296 
2 296 
3 296 
4 296 
5 888 
6 888 
7 888 
8 37835 
9 4440 
10 37839 

number 
of probes 

link estimated 
and (nominal) 

bandwidth 
9.6 (10) 

10.1 (10) 
9.6 (10) 

10.5 (10) 
9.8 (10) 
9.7 (10) 

1.43 (1.54) 
63.3 (51.8) 
1.44 (1.54) 

8.7 (10) 

converge 
criterion 

-iIs-%- 
1.7 % 
2.3 % 
3.5 % 
4.1 % 
2.2 % 
1.6 % 
100 % 
6.5 % 
40 % 

Table 5: Adaptive data collection, MINT dataset. 

6 Adaptive data collection 

One thing that is clear from the example paths is that some 
links require more measurements than others to generate an 
accurate characterization. For the first link in the MINT 
dataset (a 10 Mb/s Ethernet), an 8x16 sample is sufficient 
to estimate bandwidth within 3%. Even across several hops, 
an 8x16 sample is enough to characterize the Tl link to 
within 2%. But for fast links with many intervening hops, 
like the OC-3, even the 64x512 dataset (32,768 probes) is 
off by 9%. 

The current release of pathchar uses the same number 
of probes for each link of the path. In practice, this means 
that if the sample size is large enough to characterize the 
most difficult link, many probes are being wasted on the 
easy links. We set out to design an adaptive data collection 
system that uses only as many probes as necessary. 

In the following experiments, we simulated adaptive data 
collection by collecting a large dataset (74x512) in the usual 
way (the same number of probes for all links), and then using 
an adaptively-selected subset of the data. We start out with 
a small number of samples for each link, and then make 
“new” measurements by incrementally including additional 
data. If the estimated characteristics of a link seem to have 
converged, we move on to the next link and discard the 
remaining measurements. We hope that this process will 
discover the minimum number of samples required to reach 
a given accuracy. 

This simulation distorts the time interval between probes 
somewhat, but we do not expect that to affect the results, 
because on the time scale of minutes queue delays are noisy 
and uncorrelated (Section 7). It should not matter whether 
there is a delay between the measurement of one link and 
the next. 

6.1 Detecting convergence 

In Section 4 we described a simple way to calculate an in- 
terval for the estimated characteristics. We divide the sam- 
ple into two halves and estimate the parameters for each 
subsample. Since each estimate is based on the difference 
between adjacent links, we can use the two subsamples to 
generate four estimates for each link. The convergence 
criterion is the range of the four estimates divided by the 
smallest estimate; in other words, the difference between the 
smallest and largest, expressed as a percentage of the small- 
est. We consider a link converged if this criterion is below 
10%. 

r link number 
of probes 

540 
180 
180 
180 
180 
180 

2809 
2829 

estimated 
and (nominal) 

bandwidth 
9.82 (10) 
9.07 (10) 

10.76 (10) 
10.10 (10) 
10.73 (10) 

1.24 (1.54) 
-11.13 (51.8) 
24.15 (44.7) 

converge 
criterion 

1.6 % 
1.6 % 
3.4 % 
6.1 % 
6.7 % 
5.2 % 

46.1 % 
55.4 % 

Table 6: Adaptive data collection, SDSC dataset. 

link number 
of probes 

1 540 
2 180 
3 180 
4 180 
5 180 
6 2871 
7 2809 
8 2829 

estimated 
and (nominal) 

bandwidth 
9.8 (10) 
9.1 (10) 

10.8 (10) 
10.1 (10) 
10.7 (10) 

1.42 (1.54’) 
71.3 (51.8j 
24.2 (44.7) 

converge 
criterion 

7 
1.6 % 
3.4 % 
6.1 % 
6.7 % 

0.67 % 
28.3 % 
55.4 % 

* Table 7: Retroactive data collection, SDSC dataset. 

Based on the result from Section 5, we collected mea- 
surements at a large number of packet sizes (74 sizes rang- 
ing from from 88 to 1548). We started with 2 probes at 
each packet size and added new measurements at each size 
until the estimates converged or we exhausted the supply of 
previously-collected data (256 evens and 256 odds). Each 
time we added new measurements, we doubled their num- 
ber, starting with 2, 4, 8, etc. 

Table 5 shows the number of data points used to char- 
acterize the links in the MINT dataset. For each link, the 
table shows the estimated bandwidth and the width of the 
interval. 

In many cases, two probes per packet size is sufficient 
for the link to converge. Thus, the total number of samples 
for many links is 296 (2 subsets, 2 probes per size, 74 sizes) 
or 888 (6 probes per size). The 8th and 10th links fail to 
converge even using all the available data. 

6.2 Retroactive data collection 

Although adaptive data collection works well on the MINT 
dataset, it fails for the SDSC dataset (Table 6). The es- 
timated bandwidth of the 7th link fails to converge even 
using all the available data, and the best estimate is neg- 
ative, which is a pretty good indication that something is 
wrong. 

The problem is that the estimate for the 7th link depends 
on the data for the 6th link, and in this case the 6th link has 
converged on a value that is close to the nominal value, but 
not close enough to yield an accurate difference between the 
6th and 7th links (see Section 2.1). 

A simple solution is to collect additional measurements of 
the 6th link at the same time we are working on the 7th. For 
every 4 samples of the current link, we make one additional 
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link 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

37:43 
37832 
37850 
37846 
37842 
37838 
37808 
37793 
37346 
37777 

“b 
0:29 
0.40 
0.55 
0.79 
0.93 
11.6 
8.6 
29.9 
8.8 

Ki 
3.5 
4.3 
4.7 
5.5 
6.3 

1020 
917 
1690 
374 

Table 8: Estimated moments of the queue delays for the 
MINT dataset. 

measurement of the prior link. Table 7 shows the result of 
this technique, which we call retroactive data collection. 

In this case we have to use all the available data for the 
6th link, which yields an improved bandwidth estimate with 
a very narrow interval. Improving the characterization of 
the 6th link eliminates the problematic negative bandwidth 
of the 7th. The characterizations of the 7th and 8th links 
are still inaccurate, but they are no worse than in Table 1. 

Retroactive data collection slightly improves the esti- 
mates from the MINT dataset. In both cases it requires 
more probes than simple adaptive collection, but still far 
fewer than would be required if we collected the same num- 
ber of probes for each link. 

6.3 Directed adaptive collection 

We tried an alternate form of adaptive data collection that 
reduces the number of probes required to achieve a given 
accuracy. The basic idea is to use the residuals of the curve- 
fitting step to direct data collection. If the SORTT for a 
given packet size is above the fitted curve, we assume that 
we have not observed the minimum possible rtt; and collect 
more measurements at that size. Conversely, if a SORTT is 
below the fitted curve we can avoid wasting measurements 
on it. 

This technique is effective-it reduces the number of 
measurements needed without reducing accuracy-but it 
might make it more difficult to make a strong claim about 
the statistical validity of the result, since an initial error 
might lead to a self-fulfilling prophesy, at least in theory. In 
practice, that does not seem to be a problem. 

7 Deconvolution 

In addition to inferring the physical characteristics of a link, 
pathchar tries to characterize the distribution of queue de- 
lays, reporting the mean and hinge (ratio of the interquartile 
distance to the median). 

Predicting the delay suffered by an individual packet is 
difficult, because conditions change quickly and even recent 
measurements seldom predict the future [6]. But knowing 
the distribution of queue delays might make it possible to 
predict aggregate performance. 

Unfortunately, we seldom have the luxury of observing 
the queue delays of single link; except for the first link, all 
our observation are the sum of many queue delays (see Fig- 
ure 1 and Equation 1). In order to discern the delays im- 
posed by a given link, we have to deconvolve the observed 
distributions of adjacent links. 

Distribution of queue delays 

(fraction of probes with delay <t) 

0.8 

0.6 

.Ol .l 1 10 100 

t (ms) 

Figure 6: Distributions of cumulative queue delays from the 
MINT dataset, shown on a log scale along with fitted log- 
normal distributions. 

If x is the total queue delay of the first ?z - 1 links of a 
path, and y is the queue delay of the 71th link; then clearly 
the total delay of the first R. links is the sum of z and y, 
which we call z. If we knew 2 and z, therefore, it would be 
trivial to find y. But because of the way pathchar works, 
we can only measure z or z, never both for the same packet. 

xevertheless, by making many measurements of x and z, 
we can estimate the distribution of each, and by deconvolu- 
tion we can infer the distribution of y. The simplest form 
of deconvolution is the subtraction of moments. This is the 
technique pathchar uses. 

If we know Fx: the distribution of X, and Fy, the dis- 
tribution of Y, we can calculate the first three moments of 
Fz, the distribution of the sum 2 = X + Y, just by adding 
the moments of F.u and Fy. This is true for all distribu- 
tions and does not depend on the independence of X and 
Y. Using this property, pathchar estimates the moments of 
FY by subtracting the moments of FX from the moments of 
Fz. 

Since negative queue delays are impossible, the first three 
moments must increase monotonically from one link to the 
next. For example, the mean queue delay to the nth node 
cannot be less than the mean queue delay to the (n - 1)th 
node. 

Table 8 shows the first two moments of the queue delays 
from the MINT dataset. For each link, we fit a curve to 
the SORTTs and estimate the queue delay by subtracting 
the fitted time from each measurement. After discarding a 
small number of negative values (about l%), we have about 
38000 measurements per link. 

For the first 7 links, the moments increase monotonically, 
but then things break down. The mean queue delay for the 
8th link is less than the mean for the 7th link, and the 10th 
is less than the 9th. There are several possible explanations: 

l The estimated moments are not the true moments of 
the underlying distributions. Estimating the moments 
of distributions with long tails is notoriously difficult; 
a few outlying values can have a large influence on the 
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I Mean I Median 
late (% diff) early ] late % diff 
0.199 (+1.5) 0.083 1 0.091 (+9.2) 

link 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

early 
0.196 
0.293 
0.346 
0.566 
0.748 
1.13 
15.8 
7.51 
37.1 
10.7 

0.275 (-6.2)’ 
0.428 (+23.7) 
0.502 (-11.4) 
0.799 (+6.8) 
0.732 (-35.1) 
7.52 (-52.3) 
9.85 (+31.1) 
23.5 (-36.6) 
5.84 (-45.2) 

Lc 
early 
0.107 
0.181 
0.241 
0.433 
0.634 
1.03 
18.1 
3.26 
64.6 
10.5 

normal mean 
late (% diff) 
0.114 (+6.7) 
0.175 (-3.7) 
0.289 (+19.8) 
0.384 (-11.4) 
0.668 (+5.3) 
0.587 (-42.9) 
3.41 (-81.1) 
5.24 (+60.8) 

0.141 0.141 
0.184 0.200 
0.278 0.245 
0.330 0.326 
0.434 0.324 
0.890 0.576 
0.713 0.759 
21.9 8.47 

(-0.5)’ 
(+8.8) 

(-61.2) 
1.52 0.905 (-40.3j 

Table 9: Estimated moments of the queue delays for the MINT dataset. 

calculated estimates. 

l The distributions of queue delays are not stationary. 
Traffic conditions may have changed between the mca- 
surement of the (n - 1)th and the nth links. pathchar 
collects all the measurements from each link before 
moving on to the next, which means that there arc 
significant delays (15-45 minutes for this dataset) be- 
tween each set of measurements. It is possible for traf- 
fic conditions to change during this interval. 

Both of these explanations turn out to be true. The next 
two sections discuss them in more detail. 

7.1 Moment estimation 

The queue delay distributions can be modeled reasonably 
well by the lognormal distribution [2]. Figure 6 shows five 
representative links from the MINT dataset. In each case, it 
is clear that the observed distribution is not strictly lognor- 
mal; nevertheless, the general shape of these curves indicates 
that the lognormal model is a reasonable choice. 

In an empirical study of wide-area TCP connections, 
Paxson found a variety of other characteristics that fit the 
lognormal model [3]. We do not know whether there is an 
underlying mechanism that relates these observations, or 
whether they only reflect the versatility of the lognormal 
model. 

Using the lognormal model to estimate the moments of 
the distributions yields very different results, especially for 
the second moment. A likely explanation is that the con- 
ventional estimates are more sensitive to outliers; a small 
number of large queue delays (- 300 111s) can raise the mean 
significantly and have a huge effect on the second moment. 
Because the lognormal model is less sensitive to outliers, it 
does a better job of describing these distribut.ions. 

Nevertheless, the alternate moments have the same prob- 
lem as the conventional estimates: the moments sometimes 
decrease from link to link in a way that is impossible if the 
distribution of queue delays is stationary. We conclude that 
the distributions are, in fact, changing while pathchar is 
running. 

7.2 Non-stationarity 

To get an idea of how the distribution of queue delays varies, 
we divided the MINT dataset into two subsets, containing 
the first 18000 samples from each link and the second 18000. 

The entire dataset, took over 5 hours to collect, so the 
elapsed time between each early subset and the correspond- 
ing late subset is on the order of tens of minutes. Table 9 
shows the summary statistics of the two subsets, including 
the mean, the first moment of the lognormal model, and the 
median. 

For many of the links, the parameters of the distribution 
change by more than 30%, which implies that recent history 
is not a very good predictor of even the near future. In 
the longer term the predictions are likely to be worse. As a 
result, it may not be worthwhile for pathchar to characterize 
the distribution of queue times at all. 

8 Conclusions 

Based on our evaluation of the alpha version of pathchar 
we have found: 

l Estimating link latencies is relatively easy, since la- 
tencies in wide-area networks are large compared to 
pathchar’s measurement errors. 

l Estimating bandwidths is harder, because the differ- 
ence in round-trip time between the largest packet and 
the smallest is small compared to the measurement er- 
rors. The higher the bandwidth, the more difficult it 
is to estimate. 

l The key to getting a good bandwidth estimate is to 
send enough probes that one of them traverses the en- 
tire path without incurring any queue delays. As the 
length of the path increases, the number of probes re- 
quired increases quickly. 

l A single busy link, by imposing queue delays on the 
majority of probes, makes it difficult to resolve the 
characteristics of links on the other side. On the other 
hand, slow links are not necessarily a barrier to ac- 
curate measurement, as long as their performance is 
consistent. 

l pathchar’s attempt to characterize the distribution of 
queue times for individual links may be in vain, since 
network traffic conditions change significantly while 
pathchar is running. 

Of the new techniques we tested, only adaptive data col- 
lection seems to work well: it greatly reduces the amount 
of data required, without affecting the accuracy of the es- 
timated characteristics. None of the techniques we tried 
significantly improved pathchar’s accuracy. 
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Our experiments have uncovered a few anomalies. 

l The measured bandwidth of Tl links is consistently 
within a few percent of 1.43 Mb/s, when the nominal 
bandwidth is 1.536 Mb/s. 

l The measured bandwidth of the DS3 is consistently too 
low, with a median value close to half of the nominal 
bandwidth. 

It is not easy to explain these results, and we cannot at- 
tribute them to noise. In order for a fast link to masquerade 
as a slow link, it has to impose delays that are proportional 
to the packet size. Random noise would not yield estimates 
that are always too low, or as consistent as the Tl measure- 
ments. 
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