Multicast Transport

CSE 561 Lecture 14, Spring 2002. David Wetherall

Overview

- Last time: multicast routing
 - How to get packets from a sender to a set of receivers
- This time: multicast transport
 - What's the equivalent of "TCP" for multicast?
- Case study of two multimedia apps and protocols
 - *vic*, video conferencing; key issue: congestion control
 - *wb*, a shared whiteboard; key issue: reliability

Multicast Congestion Control

- What are the bandwidth needs of multicast applications?
 - E.g., software distribution versus conferencing
 - They must still be matched to the network even if not elastic.
- Key Issue: Heterogeneity
 - Different receiver bandwidths mean no single answer is sufficient
 - So how do we match receivers w/o separate unicasting?
- Key Approach: Layered Coding
 - Send at several rates and let receivers select the best
 - Rates can carry separate or layered information

RLM (McCanne 95)

- How do receivers select "the best" layers?
 - Want to avoid overwhelming the network
- One solution:
 - Imagine if routers implemented priority drop (and FQ) ...
 - Source could just send and "best layers" would fall out
 - But routers are best effort drop-tail with one class of service!
- RLM approach:
 - Have receivers learn (by join experiments) what layers suit them
 - Implement using one IP multicast group per layer

Binary Exponential Backoff (BEB)

- Ethernet collisions are the classic example
 - Double interval over which retransmission timer is chosen
 - Reset interval once successful
- The technique is generally useful for adapting to an environment (e.g., network conditions)
 - TCP timeouts
 - RLM
 - SRM
 - Damping flapping links (BGP, AutoNet skeptics)?

Application Level Framing (ALF)

- Clark and Tennenhouse (SIGCOMM'90)
- A design principle that calls for applications to send data in terms of units meaningful to them and lower layers to preserve these boundaries.
- Why?
 - Consider lost/reordered data
 - Consider manipulation inside the network $\ensuremath{\textcircled{\odot}}$

RLM Discussion

- Scalability
 - Shared join experiments
 - One receiver can learn when a layer will fail, but not succeed.
- Security
 - What are the interactions?

Multicast Reliability

- Scaling problems: why is multicast reliability hard, different from TCP?
 - Straightforward use of ACKs doesn't scale
 - Nor do NACKs due to *implosion*
 - Centralized retransmissions become a scaling bottleneck
 - Receiver orientation if IP multicast semantics
- Approaches to distribute work and hence scale
 - Use all group members for error recovery
 - Randomization (to avoid implosion)
 - FEC/parity coding (one retransmission for different losses)

SRM (Floyd et. al. 96)

- Approach is to *distribute* retransmissions over group
 Challenge is to minimize repair requests/responses
- Consider different topologies:
 - Chain use network distance to suppress duplicates
 - Star use randomization to suppress duplicates
 - Trees a mixture
- Adaptive learning
 - Tune timer parameters to network conditions

SRM Discussion

- Scalability
 - What are the problems?
 - How well does local recovery work?
 - Do we need network support for local recovery?
- Security
 - Cooperation is an underlying assumption
 - What about incentives?