
1

Internetworking and Reliable Transmission

CSE 561 Lecture 3, Spring 2002.
David Wetherall

djw // CSE 561, Spring 2002, with credit to savage L3.2

Overview

• Internetworking
– Addressing
– Packet size
– Error detection
– Gateway services

• Reliable Transmission
– Stop and wait
– Sliding window
– Connections

2

djw // CSE 561, Spring 2002, with credit to savage L3.3

How to connect different networks?

• Cerf&Kahn74, “A Protocol for Packet Network Intercommunication”
– Foundation for Internetworking and hence, the Internet

• Gateways
– Connect different networks together
– One half of gateway is in each network

• Two options
– Translation: Gateway translates directly between different network formats
– Indirection: Gateway translates between local network format and universal

“intermediate” format
• Pros/cons of each approach?

djw // CSE 561, Spring 2002, with credit to savage L3.4

Addressing

• Hierarchical addressing
– Global inter-network address
– Local network-specific address

• Why hierarchical?
• Assumptions about networks?

Network TCP Identifier
8 16

3

djw // CSE 561, Spring 2002, with credit to savage L3.5

Packet size

• Heterogeneous maximum packet size
– E.g. Ethernet 1500B, FDDI 4500B, SLIP ~250B

• Options
– Mandate minimum packet size

• The Internet did this (576B IPv4, ~1500 IPv6)
– Fragmentation

• Gateway splits packets into smaller acceptable packets
• We’ll talk about this next time

djw // CSE 561, Spring 2002, with credit to savage L3.6

Error detection

• Bit errors
– Checksum written at end of packet
– Checked by receiving hosts. Pros/cons?
– CRC vs Checksum: performance/detection tradeoff
– Error distribution assumptions?

• “When the CRC and TCP Checksum Disagree”, Stone& Partridge,
SIGCOMM 2000.

• Packet losses
– We’ll deal with this shortly

4

djw // CSE 561, Spring 2002, with credit to savage L3.7

Gateway services

• Things Gateways do
– Forward packets
– Fragment (must parse sequence numbers/length)

• Things they do not do
– Reassembly or duplicate detection. Why?
– Error detection
– Loss detection/retransmit requests
– Failure detection

djw // CSE 561, Spring 2002, with credit to savage L3.8

How IP works today?

• Packet format
– Header checksum
– Time-to-live
– Protocol demultiplexing
– Type-of-Service
– Options

• Addressing

• Fragmentation
– Next lecture

5

djw // CSE 561, Spring 2002, with credit to savage L3.9

IP Packet Format

length

0 15 16

options (if any)

data (if any)

31

20
bytes

ver HL TOS

identification
R
E
S

M
F

D
F offset

TTL protocol header checksum

source address

destination address

djw // CSE 561, Spring 2002, with credit to savage L3.10

IP addressing

• 32-bits in an IPv4 address
– Dotted decimal format a.b.c.d
– Each represent 8 bits of address

• Network part and host part
– E.g. IP address 132.239.15.3
– 132.239 refers to the UCSD campus network
– 15.3 refers to the host gremlin.ucsd.edu

• Which part is network vs host?
– Pre-1993 class-based addressing, static determination
– Post-1993 classless addressing, dynamic split

• This is what the “network mask” is all about

6

djw // CSE 561, Spring 2002, with credit to savage L3.11

Class-based routing (<1993)

• Most significant bits determines “class” of address

• Pro
– Single lookup to find address

• Con
– Fragmentation
– Can’t aggregate

Network Host0

Network Host1

Network Host1

16
0

1 0
821

14

Class A

Class B

Class C

127 nets, 16M hosts

16K nets, 64K hosts

2M nets, 254 hosts

djw // CSE 561, Spring 2002, with credit to savage L3.12

Classless addressing (now)

• In 1993, Classless Inter-Domain Routing introduced
– Routes represented by tuple (network prefix/mask)
– Allows arbitrary allocation between network and host address

– e.g. 10.95.1.2/8: 10 is network and remainder (95.1.2) is host
• Pro:

– Finer grained allocation, aggregation of suballocations
• Con:

– More expensive lookup: longest prefix match

Network Host

Prefix Mask=# significant bits representing prefix

7

djw // CSE 561, Spring 2002, with credit to savage L3.13

Reliable Transmission

• How do we reliably send a message when packets can be lost
in the network?

• Obvious options:
– Detect a loss and retransmit (Cerf&Kahn74)
– Send redundantly (Byers et al.98)

djw // CSE 561, Spring 2002, with credit to savage L3.14

Simplest Protocol: Stop and Wait

– Send a packet
– Stop and wait until an acknowledgement arrives from receiver
– Retransmit if timeout occurs before ACK arrives

Time
Packet

ACK

Ti
m

eo
ut

Sender Receiver

8

djw // CSE 561, Spring 2002, with credit to savage L3.15

Recovering From Errors

Packet

ACK

Ti
m

eo
ut

Packet

ACK

Ti
m

eo
ut

Packet

Ti
m

eo
ut

Packet

ACK
Ti

m
eo

ut

Time

Packet

ACK

Ti
m

eo
ut

Packet

ACK

Ti
m

eo
ut

1. ACK lost 2. Packet lost 3. Early timeout

djw // CSE 561, Spring 2002, with credit to savage L3.16

How does receiver recognize duplicate?

• Add sequence numbers to packet
– Both in data packets and ACKs

• Sequence # in packet is finite, though
• How many bits do we need?

– One bit for stop and wait
– Won’t send seq#1 until receive ACK for seq#0

Pkt 0

ACK 0

Pkt 0

ACK 1

Pkt 1ACK 0

9

djw // CSE 561, Spring 2002, with credit to savage L3.17

What if packets are delayed?

• Never reuse a seq #? Finite…
• Require in order delivery?
• Prevent very late delivery?

– TTL: Decrement hop count per packet,
discard if exceeded

– Seq #s not reused within delay bound
– TCP standard: Maximum segment

lifetime (MSL) of 120 seconds.

0

0

1

1

0

0
Accept!

Reject!

djw // CSE 561, Spring 2002, with credit to savage L3.18

Performance issues

• Capacity
– For a network with bandwidth BW and delay D, a sender can transmit

BW*D bytes before the network is “full”
– Stop-and-wait is inefficient… pipe is empty most of the time

• Delay
– Time to detect loss limited by timeout. How to select timeout?
– How could you do better that a timeout-based scheme?

10

djw // CSE 561, Spring 2002, with credit to savage L3.19

Pipeline transmission …

• Send multiple packets without waiting for
the first to be ACKed

• Hypothetical, reliable, unordered delivery:
– Send new packet after each ACK
– Sender keeps list of unACK’ed packets and

resends after timeout
– Receiver same as stop & wait

• This leads to Sliding Window, where an
allowed range of numbered packets can be
outstanding at any given time.

djw // CSE 561, Spring 2002, with credit to savage L3.20

Sliding Window

• Sender puts sequence number on packet
• Receiver acknowledges packets by number

– Replies with highest in-order number received
• Receiver includes the highest number that can be sent

– It controls the size of the window

• Sliding window is a mechanism. It implements multiple
functions:
– Reliability (retransmit unacknowledged packets)
– Ordered delivery (use numbering to order)
– Flow control (match fast sender to slow receiver)

11

djw // CSE 561, Spring 2002, with credit to savage L3.21

Visualizing a Sliding Window

4 5 6 7 8 91 2 3 10 11 12

offered window
(advertised by receiver)

effective window

sent and
acknowledged

sent, not ACKed

can send ASAP
can’t send until
window moves

Left side of window
advances when data is
ACKed

Right side controlled
by size of Advertised
Window

djw // CSE 561, Spring 2002, with credit to savage L3.22

What if we lose a packet?

• Go back N
– Receiver provides cumulative ACKs “got up through packet k”

• If multiple packets received, only one ACK needed
– OK for receiver to buffer out of order packets

• Should you send an ACK for out-of-order packets?
– On timeout, sender restarts from k+1

• Selective acknowledgement (SACK)
– Receiver sends ACK for each packet in window
– On timeout, sender resends only the missing packet

• We cover ways to avoid timeouts later
– Fast Retransmit (TCP Congestion Control)

12

djw // CSE 561, Spring 2002, with credit to savage L3.23

How TCP works today?

• Packet format
– Process demultiplexing
– Data checksum
– Options

• Connection management
• Flow control

djw // CSE 561, Spring 2002, with credit to savage L3.24

TCP Packet Format

sequence number

acknowledgement number

source port destination port

window sizereservedheader
length

U
R
G

A
C
K

P
S
H

R
S
T

S
Y
N

F
I
N

0 15 16

TCP checksum urgent pointer

options (if any)

data (if any)

31

20
bytes

13

djw // CSE 561, Spring 2002, with credit to savage L3.25

TCP Connection Establishment

• How to synchronize initial sequence numbers on each side?
– Touched on in Cerf&Kahn, but they didn’t know how to do it right
– Tomlinson invents three-way handshake in 1975

• Why do we need the last ACK?

Initiator Server

SYN, ISN = x

SYN+ACK, ISN = y and Ack = x + 1

ACK, Ack = y + 1

djw // CSE 561, Spring 2002, with credit to savage L3.26

TCP Flow control
• Sliding window

– Byte granularity for sequence numbers and advertised window
– Pro/con of bytes vs packets?

• Go-Back-N where out-of-order packets buffered
– More efficient alternatives later (congestion control)
– Fast retransmit (invented for TCP in 1988)
– SACK option (just becoming widespread)

• Lots of icky details
– Window probes, Silly Window Syndrome, Nagel algorithm, MTU

discovery, PAWS, etc…
– Steven’s “TCP/IP Illustrated” is a great source for these details

14

djw // CSE 561, Spring 2002, with credit to savage L3.27

Example Icky Detail:
Advertised Window Deadlock

• If the receiving process does not empty the buffer (e.g., not
scheduled), then the sender fills up the receiver’s buffer
– Advertised Window is 0
– Effective Window goes to 0 when all data is ACKed

• Problem: When can the sender start sending again?
– No timeouts because all data is ACKed
– No packets from receiver with a new Advertised Window because

receiver isn’t running
• Solution: Ping with a segment of 1 byte of data

– Eventually receiver responds with a new Advert. Window

