Internetworking and Reliable Transmission

CSE 561 Lecture 3, Spring 2002.
David Wetherall

Overview

* Internetworking
Addressing
Packet size

Error detection
Gateway services

* Reliable Transmission
— Stop and wait
— Sliding window
— Connections

djw // CSE 561, Spring 2002, with credit to savage

L3.2

How to connect different networks?

» Cef&Kahn74, “A Protocol for Packet Network |ntercommunication”
— Foundation for Internetworking and hence, the Internet

o Gateways
— Connect different networks together
— One half of gateway isin each network
» Two options
— Trandation: Gateway trandlates directly between different network formats

— Indirection: Gateway trandlates between local network format and universal
“intermediate” format

Pros/cons of each approach?

djw // CSE 561, Spring 2002, with credit to savage L3.3

Addressing

» Hierarchical addressing
— Global inter-network address

— Local network-specific address
8 16
| Network | TCP Identifier

* Why hierarchical?
* Assumptions about networks?

djw // CSE 561, Spring 2002, with credit to savage L3.4

Packet size

» Heterogeneous maximum packet size
— E.g. Ethernet 1500B, FDDI 4500B, SLIP ~250B
* Options
— Mandate minimum packet size
» TheInternet did this (576B 1Pv4, ~1500 | Pv6)
— Fragmentation
» Gateway splits packets into smaller acceptable packets
» We'll talk about this next time

djw // CSE 561, Spring 2002, with credit to savage L3.5

Error detection

* Biterrors
— Checksum written at end of packet
— Checked by receiving hosts. Pros/cons?
— CRC vs Checksum: performance/detection tradeoff
— Error distribution assumptions?

» “When the CRC and TCP Checksum Disagree”, Stone& Partridge,
SIGCOMM 2000.

» Packet losses
— We'll deal with this shortly

djw // CSE 561, Spring 2002, with credit to savage L3.6

Gateway services

* Things Gateways do
— Forward packets
— Fragment (must parse sequence numbers/length)

» Thingsthey do not do
— Reassembly or duplicate detection. Why?
— Error detection
— Loss detection/retransmit requests
— Failure detection

djw // CSE 561, Spring 2002, with credit to savage

How IP works today?

» Packet format

— Header checksum
Time-to-live
Protocol demultiplexing
Type-of-Service
Options

e Addressing

* Fragmentation
— Next lecture

djw // CSE 561, Spring 2002, with credit to savage

L3.8

IP Packet Format

0 15 16

31

ver HL TOS length

T O]

offset

R
identification EF
S

TTL protocol header checksum

source address

destination address

options (if any)

data (if any)

djw // CSE 561, Spring 2002, with credit to savage

20
bytes

IP addressing

e 32-bitsin an IPv4 address
— Dotted decimal format a.b.c.d
— Each represent 8 hits of address
* Network part and host part
— E.g. IP address 132.239.15.3
— 132.239 refers to the UCSD campus network
— 15.3 refersto the host gremlin.ucsd.edu
* Which part is network vs host?
— Pre-1993 class-based addressing, static determination
— Post-1993 classless addressing, dynamic split
» Thisiswhat the “network mask” is all about

djw // CSE 561, Spring 2002, with credit to savage

L3.10

Class-based routing (<1993)

* Most significant bits determines “class’ of address
Class A |o| Network Host | 127 nets, 16M hosts

14 16
Class B |1|0| Network | Host | 16K nets, 64K hosts
21 8
Class C |1|1|0| Network | Host | 2M nets, 254 hosts
* Pro
— Single lookup to find address
+ Con
— Fragmentation
— Can't aggregate
djw // CSE 561, Spring 2002, with credit to savage L3.11

Classless addressing (now)

* In 1993, Classless Inter-Domain Routing introduced
— Routes represented by tuple (network prefix/mask)
— Allows arbitrary allocation between network and host address
| Network | Host |

Prefix Mask=# significant bits representing prefix

— eg.10.95.1.2/8: 10 is network and remainder (95.1.2) is host

* Pro:
— Finer grained allocation, aggregation of suballocations

* Con:
— More expensive lookup: longest prefix match

djw // CSE 561, Spring 2002, with credit to savage L3.12

Reliable Transmission

* How do we reliably send a message when packets can be lost
in the network?

» Obvious options:
— Detect aloss and retransmit (Cerf& Kahn74)
— Send redundantly (Byers et al.98)

djw // CSE 561, Spring 2002, with credit to savage L3.13

Simplest Protocol: Stop and Wait

— Send a packet
— Stop and wait until an acknowledgement arrives from receiver
— Retransmit if timeout occurs before ACK arrives

djw // CSE 561, Spring 2002, with credit to savage L3.14

Recovering From Errors

i-- \ i \ ;'" \
= /
E__ \ E__ \. ;
y
‘ 1. ACK lost 2. Packet lost 3. Early timeout
djw // CSE 561, Spring 2002, with credit to savage L3.15

How does receiver recognize duplicate?

* Add sequence numbersto packet
— Bothin data packets and ACKs

\
» Sequence # in packet isfinite, though
* How many bits do we need?

e Sy

— One bit for stop and wait
— Won't send seg#1 until receive ACK for seq#0

djw // CSE 561, Spring 2002, with credit to savage L3.16

What if packets are delayed?

* Never reuseaseq #? Finite...
» Requirein order delivery? T
* Prevent very late delivery?

— TTL: Decrement hop count per packet,
discard if exceeded

— Seq #s not reused within delay bound
— TCP standard: Maximum segment
lifetime (MSL) of 120 seconds.

Accept!

Rej ect !

djw // CSE 561, Spring 2002, with credit to savage L3.17

Performance issues

» Capacity

— For anetwork with bandwidth BW and delay D, a sender can transmit
BW?*D bytes before the network is“full”

— Stop-and-wait isinefficient... pipeisempty most of the time
» Delay

— Timeto detect loss limited by timeout. How to select timeout?

— How could you do better that a timeout-based scheme?

djw // CSE 561, Spring 2002, with credit to savage L3.18

Pipeline transmission ...

» Send multiple packets without waiting for
thefirst to be ACKed
» Hypothetical, reliable, unordered delivery:
— Send new packet after each ACK

— Sender keepslist of unACK’ed packets and
resends after timeout

— Receiver same as stop & wait

» Thisleadsto Sliding Window, where an
allowed range of numbered packets can be
outstanding at any given time.

djw // CSE 561, Spring 2002, with credit to savage

N/

L3.19

Sliding Window

» Sender puts sequence number on packet

* Receiver acknowledges packets by number
— Replies with highest in-order number received

» Receiver includes the highest number that can be sent

— It controls the size of the window

» Sliding window is a mechanism. It implements multiple

functions:
— Rdiability (retransmit unacknowledged packets)
— Ordered delivery (use numbering to order)
— Flow control (match fast sender to slow receiver)

djw // CSE 561, Spring 2002, with credit to savage

L3.20

10

Visualizing a Sliding Window

Left side of window Right side controlled

advances when data is by size of Advertised

ACKed Window
>

1 2 3,4 5 6|7 8 9|10 11 12

_— _

djw // CSE 561, Spring 2002, with credit to savage L3.21

What if we lose a packet?

* Goback N
— Receiver provides cumulative ACKs “got up through packet k”
* |f multiple packets received, only one ACK needed
— OK for receiver to buffer out of order packets
* Should you send an ACK for out-of-order packets?
— On timeout, sender restarts from k+1
» Selective acknowledgement (SACK)
— Receiver sends ACK for each packet in window
— On timeout, sender resends only the missing packet

» Wecover waysto avoid timeouts later
— Fast Retransmit (TCP Congestion Control)

djw // CSE 561, Spring 2002, with credit to savage L3.22

11

How TCP works today?

» Packet format

— Process demultiplexing

— Datachecksum

— Options
» Connection management
* Flow control

djw // CSE 561, Spring 2002, with credit to savage

L3.23

TCP Packet Format

0 15 16

31

source port destination port

sequence number

acknowledgement number

U|A|PIR|S|F
header reserved |r[c|s|s|¥|! window size
length clklnlrindn

TCP checksum urgent pointer

options (if any)

data (if any)

djw // CSE 561, Spring 2002, with credit to savage

20
bytes

L3.24

12

TCP Connection Establishment

» How to synchronize initial sequence numbers on each side?
— Touched on in Cerf& Kahn, but they didn’t know how to do it right
— Tomlinson invents three-way handshake in 1975
Initiator Server

SYN, 1SN =
=x+t1
SYN+ACK, ISN =Y and Ack

ACK: ACk :y+ 1

* Why do we need the last ACK?

djw // CSE 561, Spring 2002, with credit to savage L3.25

TCP Flow control

¢ Sliding window
— Byte granularity for sequence numbers and advertised window
— Pro/con of bytes vs packets?
e Go-Back-N where out-of-order packets buffered
— More efficient alternatives later (congestion control)
— Fast retransmit (invented for TCPin 1988)
— SACK option (just becoming widespread)

e Lotsof icky details

— Window probes, Silly Window Syndrome, Nagel agorithm, MTU
discovery, PAWS, etc...
— Steven's“TCP/IP lllustrated” is agreat source for these details

djw // CSE 561, Spring 2002, with credit to savage L3.26

13

Example Icky Detail:
Advertised Window Deadlock

* |f the receiving process does not empty the buffer (e.g., not
scheduled), then the sender fills up the receiver’s buffer
— Advertised Window isO
— Effective Window goesto O when all datais ACKed
» Problem: When can the sender start sending again?
— No timeouts because all datais ACKed
— No packets from receiver with a new Advertised Window because
receiver isn't running
» Solution: Ping with a segment of 1 byte of data

— Eventually receiver responds with a new Advert. Window

djw // CSE 561, Spring 2002, with credit to savage L3.27

14

