How Do You Run an ISP? (a.k.a. Intra-AS Routing)

Paul Gauthier Jed Liu

14 October 2002

What does an ISP's customer care about?

- Cost
- Global connectivity
- Reliability/availability
- Quality of connection
- Privacy
- Added value (e.g., e-mail accounts, web hosting space)

Global connectivity

- ISP must either be a Tier 1 or buy transit from a Tier 1 provider
- Peering can improve connectivity to other non-Tier-1 ISPs

Forwarding options (within a single ISP)

- Using global addresses (IP)
 - Each router manages a table of (IP address prefix \rightarrow next hop) mappings
 - CIDR Classless Inter-Domain Routing
 - * ability to use variable-length IP address prefixes for routing
- Virtual circuits
 - MPLS is a technique for establishing VCs through a network of routers
 - an MPLS header is added to each packet, identifying the virtual circuit being traversed
 - swizzling lets routers avoid maintaining a table of $O(N^2)$ possible virtual circuits (and each packet having a large MPLS header)
 - $\ast\,$ each router only knows how to route the VCs that pass through it
 - * router maintains a table mapping (incoming tag \rightarrow (next hop, outgoing tag)). This is used to rewrite the incoming MPLS header with a new outgoing header, specific to the table in the next-hop router.

Maintaining routing tables

- Static tables
 - maintain routing tables by hand
 - handling failures is hard
- Routing protocols
 - Distance vector
 - * routers exchange their (IP prefix \rightarrow (next hop, distance)) routing tables with their neighbours
 - * No way to determine the origin of these routing entries.

- * If links change rapidly, can create a persistent routing loop.
- * Count-to-infinity problem:
 - 1. Routers $A \leftrightarrow B \leftrightarrow C$.
 - 2. B announces " $(C \rightarrow (C, 1))$ "
 - 3. A announces " $(C \rightarrow (B, 2))$ "
 - 4. The $B \leftrightarrow C$ link fails: $A \leftrightarrow B \times C$
 - 5. B receives A's announcement and announces " $(C \rightarrow (A, 3))$ ", which is clearly wrong
 - 6. A receives B's announcement and concludes " $(C \rightarrow (B, 4))$ "
 - 7. count to infinity...
- * Solution to count to infinity: exchange paths instead of links
- Link state
 - * Every router broadcasts its neighbour info to every other router Everyone has a complete topology
 - $\ast\,$ All announcements have "authority" since the actual owner of the link spreads the information.
 - $\ast\,$ Broadcast latency can still cause problems

Traffic engineering

- If using a shortest-path routing protocol, can vary link cost
 - Usually, operators define hop costs using some magic formula to engineer traffic
 - Cisco defaults to: $\frac{1}{\text{capacity}}$ + transmission latency.
- MPLS provides more flexibility
 - By setting up virtual circuits, can control traffic more easily
 - Failure tolerance not as automatic one router failure can take down many VCs