
Distributed Fair Scheduling in a Wireless LAN

Nitin H. Vaidya
Texas A&M University

vaidya@cs.tamu.edu

Paramvir Bahl
Microsoft Research

bahl@microsoft.com

Seema Gupta
Texas A&M University

seemag@cs.tamu.edu

ABSTRACT
Fairness is an important issue when accessing a shared wire-
less channel. With fair scheduling, it is possible to allocate
bandwidth in proportion to weights of the packet 
ows shar-
ing the channel. This paper presents a fully distributed al-
gorithm for fair scheduling in a wireless LAN. The algorithm
can be implemented without using a centralized coordina-
tor to arbitrate medium access. The proposed protocol is
derived from the Distributed Coordination Function in the
IEEE 802.11 standard. Simulation results show that the
proposed algorithm is able to schedule transmissions such
that the bandwidth allocated to di�erent 
ows is propor-
tional to their weights. An attractive feature of the pro-
posed approach is that it can be implemented with simple
modi�cations to the IEEE 802.11 standard.

1. INTRODUCTION
Wireless communication technology has gained widespread
acceptance in recent years. Wireless local area networks
have come into greater use, with the advent of the IEEE
802.11 standard [12]. Fairness is an important issue when
accessing a shared wireless channel. With fair scheduling,
di�erent 
ows sharing a wireless channel can be allocated
bandwidth in proportion of their \weights". This paper
presents a distributed medium access control (MAC) pro-
tocol for fair scheduling in a wireless LAN. Although IEEE
802.11 wireless MAC [12] is not fair (particularly on short
time-scales), the proposed protocol is derived from the Dis-
tributed Coordination Function (DCF) in IEEE 802.11. An
attractive feature of our approach is that it can be imple-
mented with simple modi�cations to IEEE 802.11. This
section discusses the motivation for considering distributed
protocols, and elaborates on the de�nition of fairness.

1.1 Centralized and Distributed Protocols
Wireless transmissions by hosts within proximity of each
other can interfere. Therefore, several medium access con-
trol (MAC) protocols for wireless networks have been pro-

posed in the past. In general, MAC protocols may be di-
vided into two types:

� Centralized: In centralized protocols, a designated host
(often referred to as base station or access point) coor-
dinates access to the wireless medium. A node want-
ing to transmit must wait until permission to transmit
is granted by the coordinator node { the mechanisms
for requesting and granting such permission may dif-
fer in di�erent protocols. Point Coordination Function
(PCF) in IEEE 802.11 is an example of the centralized
approach.

� Distributed: In distributed protocols, a coordinator is
not needed to arbitrate access to the wireless medium.
For instance, in the CSMA (carrier sense multiple ac-
cess) protocol, a node wishing to transmit a packet
does so only if it does not hear another on-going trans-
mission. CSMA protocol is fully distributed, since
each node independently determines whether to trans-
mit a packet or not. Distributed Coordination Func-
tion (DCF) in IEEE 802.11 is an example of the dis-
tributed approach.

There are several bene�ts of using a distributed approach as
compared to a centralized approach:

� In the centralized approach, if a node cannot communi-
cate with the coordinator, then it cannot transmit any
packets. On the other hand, with a distributed proto-
col, if a node cannot communicate with some nodes, it
may still be able transmit packets to other nodes.

� In the centralized approach, the coordinator has the
responsibility of keeping track of the state information
for nodes on the LAN. In distributed protocols, this
overhead can be eliminated.

� In a centralized approach, it is diÆcult to use a battery-
powered node as the coordinator, since the coordinator
will fail if the battery runs out. With failure-prone co-
ordinators, other nodes must be able to reliably detect
failure of the coordinator, and elect a new coordinator.

Keeping the above issues in mind, this paper develops a
distributed approach for fair scheduling.



1.2 Fair Queueing and Other Related Work
Much research has been performed on \fair queueing" al-
gorithms for achieving a fair allocation of bandwidth on a
shared link [1, 4, 10, 14, 19, 22]. Consider the system shown
in Figure 1, where a node maintains several queues (or 
ows)
which store packets to be transmitted on an output link. A
fair queueing algorithm is used to determine which 
ow to
serve next, so as to satisfy a certain fairness criterion. By
design, these fair queuing algorithms are centralized, since
they are executed on a single node (for instance, a switch or
router) which has access to all information about the 
ows.

flow 2

flow 1

flow n

Output link

Figure 1: A node with several 
ows sharing a link

Fair queueing algorithms in literature typically attempt to
approximate the Generalized Processor Sharing (GPS) dis-
cipline [19]. When using the GPS discipline, a server serves,
say, n 
ows each characterized by a positive weight; let �i
denote the weight associated with 
ow i (i = 1; � � � ; n). Let
Wi(t1; t2) be the amount of 
ow i traÆc served in the in-
terval [t1; t2]. Then, for a GPS server [19], if 
ow i is back-
logged1 throughout [t1; t2], the following condition holds:

Wi(t1; t2)

Wj(t1; t2)
� �i

�j
; 8j (1)

Equality holds above if 
ow j is also backlogged in interval
[t1; t2]. Note that the above condition is valid regardless of
how small the interval [t1; t2] is. This implies that the GPS
server can \interleave" data from di�erent 
ows with an
arbitrarily �ne granularity. The GPS discipline cannot be
accurately implemented in practice, since data transmitted
on real networks is packetized. This observation led to devel-
opment of several packet fair queuing algorithms which ap-
proximate GPS under the constraint that each packet must
be transmitted as a whole [1, 4, 10, 14, 19, 22]. These pro-
tocols are centralized by design, as noted above.

There has also been some work on achieving fairness using
distributed MAC protocols for wireless networks [2, 8]. How-
ever, past work on incorporating fairness into distributed
protocols has been limited in that these protocols attempt
to provide equal share of bandwidth to di�erent nodes (es-
sentially, node weights are implicitly assumed to be equal).
There has been work on distributed protocols that take pri-
orities into account when performing medium access con-
trol [3, 21]. However, these protocols do not perform fair
allocation of bandwidth. Interesting work on a distributed
scheduling algorithm for real-time traÆc on a wireless LAN
has also been performed [23]. This work, however, assumes
that a 
ow transmits packets with a constant rate. Such as-
sumptions cannot be made when performing fair scheduling.

Location-Dependent Errors: In recent years, researchers

1A queue (or 
ow) is said to be backlogged if it is not empty.

have also considered the use of fair queueing in the wireless
cellular environment illustrated in Figure 2(a). Although ex-
isting centralized algorithms may be applied to the wireless
environment (with the base station acting as the coordina-
tor), it has been observed that fairness achieved by these
algorithms may su�er in presence of location-dependent er-
rors [18] { with location-dependent errors, while error-free
transmission may be possible between a given host and the
base station, transmissions between another host and the
base station may be corrupted by errors. In this case, some
mechanism to \compensate" hosts whose packets are cor-
rupted by errors should be incorporated. Many approaches
for improving fairness in presence of location-dependent er-
rors have been developed [16, 17, 18, 20]. These approaches
are centralized and require the base station to coordinate
access to the wireless channel.
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Figure 2: Wireless environments

2. PRELIMINARIES
Objective behind this work was to develop a fair schedul-
ing MAC protocol for a wireless LAN (illustrated in Fig-
ure 2(b)), with the following properties:

� The protocol must be fully distributed in that no single
node should have any special responsibility.

� Each node should be able to independently determine
when to transmit a packet, without knowing the state
of (or existence of) 
ows at other nodes { state of a

ow includes information such as weight of the 
ow,
whether the 
ow is backlogged or not, and time of
arrival of packets on the 
ow.

� Maintain compatibility or close resemblance to an ex-
isting wireless MAC standard, to make it easier to im-
plement the proposed protocol.

2.1 Proposed Approach
We observe that many centralized fair queueing algorithms
behave as follows:

� The coordinator maintains a \virtual clock" { di�erent
algorithms di�er in how the virtual clock is updated.



� Start and �nish tags are assigned to each packet arriv-
ing on each 
ow. Packets are scheduled for transmis-
sion in the order of either �nish tags [9, 4, 1] or start
tags [10].

Two signi�cantly di�erent approaches are used for updating
the virtual clock:

� In one approach, the rate of increase of virtual time is
a function of the set of backlogged 
ows [4, 1].

� In the alternative approaches, the virtual clock is up-
dated to be equal to either start tag [10] or �nish tag
[9] of the most recent packet in service.

The �rst approach above (for updating virtual clocks) poten-
tially allows the fair queuing algorithms to match GPS more
closely [1]. However, in the second approach, the virtual
clock can be updated without knowing which 
ows are back-
logged [9, 10]. Due to this property, the second approach is
more suitable for a distributed implementation. Next two
subsections describe a centralized fair queueing algorithm,
and the IEEE 802.11 MAC protocol, which together form
the basis for the proposed fair scheduling protocol.

2.2 Self-Clocked Fair Queueing (SCFQ)
The algorithm proposed here was designed in an attempt
to emulate Self-Clocked Fair Queueing (SCFQ) [9] in a dis-
tributed manner. Two important issues are worth noting:

� The proposed technique to implement distributed fair
scheduling can also be extended to other fair queueing
algorithms, such as Start-Time Fair Queueing (SFQ)
[10].

� Although our intention was to emulate SCFQ, the dis-
tributed implementation behaves somewhat di�erently,
as discussed later in Sections 4.1 and 4.4.

Now we brie
y describe the centralized SCFQ algorithm [9]
which assumes the architecture shown in Figure 1. A vir-
tual clock is maintained by the central coordinator, and v(t)
denotes the virtual time at real time t. Let P k

i denote the
k-th packet arriving on 
ow i. Let Ak

i denote the real time
at which packet P k

i arrives. Let Lki denote the size of packet
P k
i . A start tag Ski and a �nish tag F k

i are associated with
each packet P k

i , as described below. Let F 0
i = 0; 8i.

1. On arrival of packet P k
i , the packet is stamped with

start tag Ski , calculated as

Ski = maximumfv(Ak
i ); F

k�1
i g

Also, F k
i , the �nish tag of P k

i is calculated as

F k
i = Ski +

Lki
�i

2. Initially, the virtual clock is set to 0, i.e., v(0) = 0.
The virtual time is updated only when a new packet
is transmitted. When a packet begins transmission on
the output link, the virtual clock is set equal to the
�nish tag of that packet.

3. Packets are transmitted on the link in the increasing
order of their �nish tags. Ties are broken arbitrarily.

As noted in Step 1 above, in the SCFQ algorithm (and, also
in other algorithms, such as SFQ [10], WFQ [4], WF2Q [1],
etc.), the start and �nish tags are calculated when a packet
arrives in a 
ow. An alternative approach is to calculate
the start tag when a packet reaches the front of its 
ow
{ that is, for a packet P k

i in 
ow i, start and �nish tags
are calculated only after all packets that arrived in 
ow i
before packet P k

i have been serviced. If this approach were
to be used, then calculation of the start tag above should be
modi�ed as follows:

� Let fki denote the real time when packet P k
i reaches

the front of its 
ow. If P k
i arrives on an empty 
ow,

then fki = Ak
i ; else f

k
i will denote the real time when

P k�1
i �nishes service. On arrival of packet P k

i at the
front of its 
ow, the packet is stamped with start tag
Ski , calculated as

Ski = v(fki ) (2)

The �nish tag is calculated as before, as F k
i = Ski +L

k
i =�i. It

is a simple exercise to verify that, for the SCFQ algorithm,
this new procedure and the earlier procedure result in the
same start and �nish tags for all packets. In our distributed
implementation, however, we emulate the latter procedure.

2.3 IEEE 802.11 MAC : Distributed Coordi-
nation Function

The MAC speci�ed in IEEE 802.11 standard cannot per-
form fair allocation, particularly on short time scales (even
if we assume that all 
ows have equal weights). However,
using a mechanism similar to the Distributed Coordination
Function (DCF) in IEEE 802.11, the proposed protocol is
able to achieve signi�cantly better fairness.

We now brie
y present salient features of the Distributed
Coordination Function (DCF) in IEEE 802.11. CSMA/CA
(collision avoidance) mechanism is incorporated in DCF {
a similar mechanism is also used in the proposed protocol.
When a node i wishes to transmit a packet, it chooses a
\backo�" interval equal to Bi slots.

2 Speci�cally, Bi is cho-
sen uniformly distributed in the interval [0; cw], where cw
is size of the so-called contention window. cw at node i is
reset to a value CWmin at the beginning of time, and after
each successful transmission of a data packet by node i.

Now, if the transmission medium is not idle, node i waits
until it becomes idle. Then, while the medium is idle, Bi

is decremented by 1 after each slot time.3 If the medium
becomes busy while Bi is non-zero, then Bi is frozen while
the medium is busy. Bi is decremented again when the
medium becomes idle. Eventually, when Bi reaches 0, node
i transmits a Request-to-Send (RTS) packet for the intended

2A slot is a �xed interval of time de�ned in IEEE 802.11.
3Actually, node i waits for an interval known as an inter-
frame spacing [12], before starting to decrement Bi. We will
omit such details in this discussion. However, our simulation
model implements these details accurately.



destination of the packet. The destination node, on receiv-
ing the RTS, sends a Clear-to-Send (CTS) packet. The node
i, on receipt of the CTS packet, transmits the data packet.
The receiver node, on receipt of data, sends an acknowl-
edgement (ACK). Now, it is possible that two nodes, say
i and j, may choose their backo� intervals such that they
both transmit their RTS packets simultaneously, causing a
collision between the RTS packets. In this case, node i will
not receive a CTS, therefore, it will not be able to send the
data packet. When a CTS is not received, node i doubles
its contention window size cw, picks a new Bi uniformly
distributed over [0; cw], and repeats the above procedure.

3. PROPOSED DISTRIBUTED FAIR
SCHEDULING (DFS) PROTOCOL

The proposed Distributed Fair Scheduling (DFS) protocol is
based on the IEEE 802.11 MAC and SCFQ:

� The DFS protocol borrows on SCFQ's idea of trans-
mitting the packet whose �nish tag is smallest, as well
as SCFQ's mechanism for updating the virtual time.

� A distributed approach for determining the smallest
�nish tag is employed, using the backo� interval mech-
anism from IEEE 802.11 MAC. The essential idea is
to choose a backo� interval that is proportional to the
�nish tag of packet to be transmitted. Several im-
plementations of this idea are possible, as discussed
below.

We now describe the proposed approach. In our discussion
and simulations, we assume that all packets at a node be-
long to a single 
ow { the proposed algorithm can be easily
extended when multiple queues are maintained at each node
(as discussed later in Section 4.2).

Each node i maintains a local virtual clock, vi(t), where
vi(0) = 0. Now, P k

i represents the k-th packet arriving at
the 
ow at node i on the LAN.

� Each transmitted packet is tagged with its �nish tag.

� When at time t node i hears or transmits a packet with
�nish tag Z, node i sets its virtual clock vi equal

4 to
maximum(vi(t); Z).

� Start and �nish tags for a packet are not calculated
when the packet arrives. Instead, the tags for a packet
are calculated when the packet reaches the front of its

ow. When packet P k

i reaches the front of its 
ow
at node i, the packet is stamped with start tag Ski ,
calculated as (similar to Equation 2 for the SCFQ al-
gorithm), Ski = v(fki ), where f

k
i denotes the real time

when packet P k
i reaches the front of the 
ow.

4The virtual clock update mechanism in DFS di�ers some-
what from that in SCFQ. Due to potential collision between
packets in the distributed implementation, occasionally a
packet with a smaller �nish tag may be transmitted be-
fore a packet with a greater �nish tag. To ensure that vir-
tual clocks are non-decreasing, max(vi(t); Z) is used in this
step. Incidentally, as discussed later in Section 4.1, DFS
can be implemented without maintaining virtual clocks at
the nodes.

Finish tag F k
i is calculated as follows, where appropri-

ate choice of the Scaling Factor allows us to choose a
suitable scale for the virtual time.

F k
i = Ski + Scaling Factor � L

k
i

�i

= v(fki ) + Scaling Factor � L
k
i

�i

� The objective of the next step is to choose a backo�
interval such that a packet with smaller �nish tag will
ideally be assigned a smaller backo� interval. This step
is performed at time fki . Speci�cally, node i picks a
backo� interval Bi for packet P

k
i , as a function of F k

i

and the current virtual time vi(f
k
i ), as follows:

Bi =
j
F k
i � v(fki )

k
slots, (3)

Now, observe that, since F k
i = v(fki )+Scaling Factor�

Lk

i

�i
, the above expression reduces to:

Bi =

�
Scaling Factor � L

k
i

�i

�
(4)

Finally, to reduce the possibility of collisions, we ran-
domize the Bi value chosen above as follows:

Bi = b� �Bic (5)

where � is a random variable with mean 1 { in our
simulations, � is uniformly distributed in [0:9; 1:1].

When this step is performed, a variable named Colli-
sionCounter is reset to 0.

� Collision handling: If a collision occurs (because back-
o� intervals of two or more nodes count down to 0
simultaneously), then the following procedure is used.
Let node i be one of the nodes whose transmission has
collided with some other node(s). Node i chooses a
new backo� interval as follows:

{ Increment CollisionCounter by 1.

{ Choose new Bi uniformly distributed inh
1; 2CollisionCounter�1 � CollisionWindow

i
,

where CollisionWindow is a constant parameter.

If CollisionWindow is chosen to be small, the above
procedure tends to choose a relatively small Bi (in the
range [1,CollisionWindow]) after the �rst collision for a
packet. The motivation for choosing small Bi after the
�rst collision is as follows: The fact that node i was \a
potential winner" of the contention for channel access
indicates that it is node i's turn to transmit in the near
future. Therefore, Bi is chosen to be small to increase
the probability that node i wins again soon. However,
to protect against the situation when too many nodes
collide, the range for Bi grows exponentially with the
number of consecutive collisions.

The above protocol has two potential shortcomings:

� The DFS protocol can exhibit short-term unfairness
for some nodes when their packets collide. For in-
stance, assume that, at the beginning of time, nodes



1, 2 and 3 pick backo� intervals of 25, 25, and 26 slots,
respectively. Nodes 1 and 2 would collide when their
backo� intervals count down to 0 (the backo� interval
of node 3 would count down to 1 slot by this time). Af-
ter collision, nodes 1 and 2 pick new backo� intervals
of, say, 2 and 3 slots, respectively. In this case, node 3
would end up transmitting a packet before nodes 1 and
2, even though these two nodes should have transmit-
ted earlier (since their original backo� intervals were
smaller).

To eliminate such unfairness, a collision resolution pro-
tocol which guarantees colliding stations access prior
to access by any other node (or, a protocol which en-
sures this with a high probability) must be used. Pro-
tocols for collision resolution have been proposed in
the past [7]. Analogous approaches may be used in
conjunction with our algorithm as well. Guaranteeing
\near-perfect" collision resolution, however, may add
to the overhead { therefore, for our performance evalu-
ation, we consider the DFS algorithm presented above,
without using such a mechanism.

� Observe that in DFS, duration of the backo� interval
is inversely proportional to weight of a 
ow. When
the weights of backlogged 
ows are small (weights of
presently idle 
ows may be large), the duration of the
backo� intervals can become large. This leads to long
durations of idle time, when the nodes are counting
down the backo� intervals to 0. To address this prob-
lem, we now present an exponential mapping scheme
to translate �nish tags into backo� intervals.

3.1 Exponential Mapping Scheme
We will refer to the scheme presented above for calculating
the backo� interval as the linear scheme (or linear map-
ping). From Equations 3 and 4, observe that in the linear
scheme, backo� interval Bi is a linear function of �nish tag,
and directly proportional to (1/
ow weight). This can make
the backo� intervals large, when 
ow weights are small, as
noted above. We consider an alternative approach to obtain
the backo� interval, as follows (other alternatives are also
possible).

Let � denote the backo� interval obtained in Equation 5
using the linear scheme described above. When using the
exponential scheme, we apply another function 
(�) to ob-
tain the actual backo� interval Bi to be used for medium
access. Function 
(�) is de�ned in Figure 3. In the def-
inition of 
(�) in Figure 3, note that, Threshold, K1 and
K2 are constant parameters. Use of the 
 function has the
impact of compressing large � values into a smaller range {
this has an advantage and a disadvantage:

� The advantage is that the time spent in counting down
backo� intervals is reduced, potentially improving per-
formance when weights of backlogged 
ows are small.

Example 1. Consider an example of two 
ows with
weights 0.01 and 0.02, respectively { it may be the case
that there are several other 
ows, however, let us as-
sume that the other 
ows are not backlogged presently.
With the linear approach, backo� intervals would be

inversely proportional to the weights. With packets of
size 1000 bytes, and Scaling Factor = 1/100, the linear
approach may yield backo� intervals of 1000 slots and
500 slots, respectively, for the two 
ows. Now, for the
exponential scheme, suppose Threshold = 80, K1 =
80, and K2 = 0:002. Then, the corresponding exponen-
tially mapped backo� interval would be 
(1000) = 147
and 
(500) = 125 slots, respectively. Thus, the backo�
interval of 
ow 2 would count down to 0 much sooner
with the exponential mapping, as compared to the lin-
ear mapping. 2

� The disadvantage is that, since a larger range of linear
backo� intervals is \compressed" into a smaller expo-
nential range, the likelihood of collisions can increase
with the exponential scheme. For instance, 
(990) =

(1000) = 147 { therefore, two nodes which simulta-
neously begin counting down from initial backo� in-
tervals of 990 and 1000 slots when using the linear
scheme, would instead both start counting down from
147 slots when using the exponential scheme. If the lin-
ear scheme were to be used, these two nodes would not
collide, however, with the exponential mapping scheme
they would collide.

To reduce the possibility for such additional collisions,
when de�ning 
 we introduced Threshold as a lower
bound (on backo� interval) below which the exponen-
tial function is not applied { thus, the �nal value of Bi

may belong to the linear range (between 1 and Thresh-
old) or the exponential range (above Threshold).

A small Threshold would result in poorer fairness but
higher throughput, while a larger Threshold would yield
better fairness but poorer throughput. Thus, by choos-
ing the appropriate Threshold, a trade-o� between fair-
ness and throughput can be obtained.

The above exponential mapping scheme needs to be aug-
mented to incorporate a recalculation procedure, as dis-
cussed below.

Recalculation of Backo� Intervals: Unlike the case of
linear mapping, additional care needs to be taken to ensure
fair allocation in case of exponential mapping { in particu-
lar, the backo� intervals must be \recalculated" after each
packet transmission to maintain fairness. Let us explain this
using the following example.

Example 2. Consider two 
ows, 
ow 1 at node 1, and

ow 2 at node 2, with weights 1.0 and 0.05, respectively.
Assume that both 
ows begin with several queued packets
of identical size at time 0. Let the packet size be 1000
bytes, and the Scaling Factor be 0.01. Then, Scaling Factor�
packetsize=
ow weight will be 10 slots for 
ow 1, and 200
slots for 
ow 2. For simplicity, let us assume that the ran-
dom multiplier (i.e., �) used for all packets is 1.0 in this
example. Therefore, 
ow 1 will pick a backo� interval of 10
slots for all its packets, and 
ow 2 will pick a backo� interval
of 200 slots for all its packets. As a result, on average, 
ow 2
will transmit one packet for every 20 packets transmitted by

ow 1 { this is consistent with the assigned weights. Now, if
the exponential scheme were to be used with Threshold = 80



Bi = 
(�) =

(
�; if � < Thresholdj
Threshold +K1 �

�
1� e�K2�(��Threshold)

�k
; otherwise

(6)

Figure 3: Function 
 : Threshold, K1 and K2 are constant parameters. In our simulations, we use K1 =
Threshold.

slots, K1 = 1000 and K2 = 0:002, then, 
ow 1 will continue
to use backo� interval of 10 slots, but 
ow 2 will pick a
backo� interval of 
(200)=97. Now, unless some precaution
is taken, 
ow 2 will transmit a packet after approximately
9 or 10 packets transmitted by 
ow 1, on average { this is
inconsistent with the assigned weights. 2

The above example illustrates that, unless modi�ed, the ex-
ponential mapping scheme presented above can result in un-
fair bandwidth allocation. To avoid such unfairness, the
backo� intervals in the exponential range must be recalcu-
lated after each packet transmission on the wireless channel.
We now describe our recalculation procedure (other alter-
natives for recalculation are also possible, but not discussed
here for brevity). When using the recalculation procedure,
the � value for a given pending packet may be recalculated
many times.

Consider a packet P that is being transmitted on the channel
presently { let the most recent value of � for this packet be
�current. Then, to allow recalculations to be performed,
when packet P is transmitted, we tag it with the value
�current. For instance, in Example 2 above, node 1 might
tag its transmitted packet with �current = 10. Now, when
some node i hears a packet transmitted by node j, node
i updates the � and Bi for its pending packet (if any) as
shown in Figure 4. (Please note that due to vagaries of our
text formatting software, the �gures in this paper may not
appear in order of their sequence numbers.)

The �nal step in Figure 4 recalculates backo� interval. Node
i then begins to count down from this new value of Bi.

In Example 2, 
ows 1 and 2 initially set � to 10 and 200
slots, respectively, and the backo� intervals to 10 and 97
slots, respectively, as discussed above. Now, when 
ow 1
transmits its packet after counting down the backo� in-
terval from 10 to 0, it tags the transmitted packet with
�current = 10. On hearing this packet, node 2 updates
its � as 200-10=190, and recalculates the backo� interval as

(190). (Now, for the packet on 
ow 2, �current = 190.)

In the above example, since the backo� interval of 
ow 1 was
in the linear range, for its transmitted packets, most recently
calculated values of � and the chosen backo� interval are
equal { however, in general, this may not be the case. For
instance, if only 
ow 2 was backlogged in the above example
(i.e., 
ow 1 does not attempt to transmit), then 
ow 2 will
start with backo� interval of 97 slots and � = 200 slots, and
eventually transmit a packet { this packet would then have
been tagged with its �current = 200.

3.2 Other Mappings

In general, any increasing function can be used to map �
values to backo� intervals, similar to the 
 exponential map-
ping function de�ned earlier. Note that although the linear
and exponential mapping functions are increasing, they are
not strictly monotonically increasing functions, due to the
fact that backo� intervals must be integers. This can result
in many � values being mapped to the same backo� interval
{ the frequency of such occurrences depends on how much
\compression" is performed by the mapping function. Ob-
serve that the exponential function results in a signi�cantly
greater compression than the linear mapping. As a com-
promise between these two possibilities, in our evaluation,
we also consider another mapping 	(�) de�ned in Figure 5.
We will refer to the mapping in Figure 5 as the square-root

Bi = 	(�) =

(
�; if � < Thresholdjp

Threshold ��
k
; otherwise

Figure 5: Function 	

mapping. Procedure for using the square-root mapping is
identical to that for exponential mapping, except that 	(�)
is used instead of 
(�). The recalculation procedure is also
similar to that for the exponential mapping, with the only
di�erence being that 	(�) is used instead of 
(�).

Figure 6 illustrates the three mappings considered in this
paper. Clearly, many other alternatives for the mapping
are also possible. In this paper, however, only the above
mappings are evaluated.
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3.3 Summary of DFS Protocol



� =

�
�� (�current value tagged to the transmitted packet); if ���current > 0
�; otherwise

Bi = 
(�)

Figure 4: Recalculation procedure

In summary, the DFS protocol behaves quite similar to IEEE
802.11, the primary di�erence being in the way backo� in-
terval is calculated initially. Also, in case of the exponential
and square-root mappings, the backo� interval is also up-
dated whenever a node hears another node transmitting a
packet. By appropriately calculating the backo� intervals,
DFS is able to achieve much fairer allocation of bandwidth,
than what is feasible using 802.11.

4. OBSERVATIONS
4.1 Virtual Clocks
Recall that with linear mapping, the backo� interval is cal-
culated using Equations 4 and 5. Thus, the virtual clock
value maintained by a node is not used in the calculation
of backo� interval at all. This means that, when using the
linear mapping, there is no need to tag the �nish tag to
the transmitted packet, or to maintain a virtual clock at
the nodes. This is the approach used in our performance
evaluation of DFS.

Similarly, in the exponential mapping scheme and the recal-
culation procedure presented in the paper, the virtual time
is not used. Thus, there is no need to maintain virtual clocks
in this case as well. For exponential and square-root map-
pings though, we need to tag �current of the transmitted
packet. Also, it should be noted that alternative recalcu-
lation procedures can be conceived which make use of the
virtual time. When such procedures are used, it is necessary
to maintain virtual clocks.

4.2 Multiple Flows Per Node
In our discussion of DFS, we assumed that only one 
ow
exists at each node. In general, it is possible that each node
may maintain multiple 
ows locally. In this case, we modify
the DFS protocol in Section 3 as described below.

� Whenever a packet reaches the front of its 
ow at some
node i, start and �nish tags for the packet are calcu-
lated as described in DFS. Speci�cally, the start tag
is set equal to the current virtual time at node i, and
�nish tag for the packet is set equal to the (start tag
+ Scaling Factor*packet length/
ow weight).

� When node i needs to choose the next packet that it
will attempt to transmit, it chooses the packet, say P ,
with the smallest �nish tag among packets at the front
of all backlogged 
ows at node i. Backo� interval for
packet P is calculated using procedure described in
Section 3. Rest of the steps for transmitting P are
identical to those described in DFS.

An analogous procedure has been suggested in the paper
on MACAW [2], although that paper does not present a

mechanism for allocating bandwidth proportional to weights
of the 
ows.

4.3 Impact of Transmission Errors
In case of a wireless LAN, transmission errors can occur,
resulting in packet loss. There are two issues that need to
be addressed in this area:

� How to determine which packet is lost due to trans-
mission errors.

� How to maintain fairness in presence of transmission
errors, assuming that the above question can be an-
swered satisfactorily.

We have performed evaluation of the proposed DFS scheme
in presence of errors. Our simulations indicate that, in pres-
ence of errors, fairness achieved by DFS degrades (as might
be expected), however, it remains fairer than IEEE 802.11.
We now brie
y present some preliminary ideas on addressing
the above two questions:

� For the sender of a packet on the wireless channel,
it is diÆcult to determine whether a packet was lost
due to transmission errors, or due to collision with
transmission by another node on the LAN.

As discussed previously, IEEE 802.11 provides for an
exchange of RTS and CTS packets that precedes the
transmission of the data packet. The heuristic we pro-
pose (to be used in conjunction with DFS) is to assume
that any loss of RTS or CTS packets is due to colli-
sions, and any loss of a data or ACK packet is due
to transmission errors. Clearly, RTS and CTS pack-
ets may be lost due to errors too. Assuming their loss
to be due to collision results in the invocation of the
collision handling procedure in DFS. Since the back-
o� interval chosen after the �rst collision of a packet
is small, the cost of misinterpreting an error loss as a
collision loss is not high.

� Compensation of 
ows: Many centralized approaches
have been developed for improving fairness in presence
of location-dependent errors [5, 16, 17, 18, 20]. Among
these proposals, the schemes presented in [5] and [20]
lend themselves well to a distributed implementation.
An additional \compensating" 
ow at each node, sim-
ilar to the Long-Term Fairness Server (LTFS) de�ned
in [20] can be maintained in DFS. An LTFS is used
to temporarily allocate additional bandwidth to com-
pensate 
ows that su�er transmission errors. In the
distributed case, one or more LTFS can be maintained
at each node on the LAN, whereas in the central-
ized algorithm in [20], only the base station maintains



LTFSs. Reference [5] proposes a di�erent mechanism,
consisting of dynamic adaptation of weights by erro-
neous 
ows to increase e�ort in order to reclaim lost
bandwidth. It shows that 
ows experiencing low error-
rates can achieve long-term fairness. In [5], the amount
of compensation can be limited administratively by
means of a power factor. The idea of dynamic adapta-
tion of weights has been implemented in DFS in [11]
to achieve long-term fairness in the presence of errors.

4.4 Comparison of DFS and SCFQ
Note that we began with the goal of imitating SCFQ. As seen
from the description of DFS, the DFS algorithm may appear
to imitate SCFQ. However, there is a signi�cant di�erence
between the behaviors of SCFQ and DFS. Speci�cally, DFS
can yield packet transmissions in an order that cannot possi-
bly be obtained in the centralized implementation of SCFQ.
In general, we believe that such a deviation is likely to occur
when any centralized work-conserving scheme5 is applied to
a distributed environment.

To illustrate the di�erence between SCFQ and DFS, con-
sider a system consisting of two 
ows (in the distributed
case, the two 
ows reside on two di�erent nodes). Let the
weight of 
ow 1 be 0.1 and the weight of 
ow 2 be 0.5. As-
sume that, initially, both 
ows are empty. Also assume that
a packet arrives on 
ow 1 at time 0, and a packet of the
same size arrives on 
ow 2 at time 0.0002 second. Now, in
the centralized implementation, since only 
ow 1 is back-
logged at time 0 when using a work-conserving scheduler,
the packet from 
ow 1 is transmitted at time 0, followed by
the packet from 
ow 2.

In the distributed case, let us assume that the two 
ows
reside on two di�erent nodes. With the distributed imple-
mentation in DFS, a backo� interval of, say, 100 slots may
be chosen for 
ow 1. Let us assume that a slot is of duration
0.00001 second. Also, assume that the linear mapping is be-
ing used. Now, the packet on 
ow 2 arrives at time 0.0002
second { by this time, 
ow 1's backo� interval would have
counted down from 100 to 80 (because each slot is of dura-
tion 0.00001 second). Since weight of 
ow 2 is �ve times the
weight of 
ow 1, the backo� interval chosen for the packet
on 
ow 2 may be 20 slots. Thus, the backo� interval of 
ow
2 will count down from 20 to 0 before 
ow 1's backo� in-
terval counts down to 0. Therefore, 
ow 2 will transmit a
packet before 
ow 1 can transmit.

Clearly, the centralized and distributed implementations re-
sult in di�erent ordering of packet transmissions. Essen-
tially, this is because the distributed implementation is not
work-conserving { some of the \work" is spent on perform-
ing medium access control (MAC), not transmitting pack-
ets from the 
ows. As seen above, the overhead incurred
by MAC may allow transmission of packets which could
not have been considered for transmission in the centralized
case.

4.5 Choice of Weights
5When using a work-conserving server, the output channel
is not kept idle if any 
ow is backlogged.

Performance of DFS depends on the weights assigned to
various 
ows. Performance achieved by DFS changes if the
absolute weights assigned to 
ows are changed, even while
keeping the ratio of weights of di�erent 
ows the same. In
this paper, we do not consider the mechanism for determin-
ing appropriate weights for the 
ows. However, it should
be noted that, larger weights result in DFS choosing smaller
contention windows. Therefore, if the weights are chosen to
be too large, DFS performance can degrade due to increased
collisions.

4.6 Dynamic Adaptation of Weights
In the above discussion, we assumed that the weight of
each 
ow is constant, and prede�ned. Since the protocol
is fully distributed, a given node does not need to be aware
of the weights of 
ows at other nodes. Also, the complexity
of the protocol code executed at any node is independent
of whether the weight assigned to a 
ow is a constant or
changes dynamically. Thus, it is possible to use the proposed
protocols in an environment where (potentially) a di�erent
weight may be chosen for each packet on a 
ow, without in-
creasing protocol complexity. However, it should be noted
that, to maintain the complexity, the weight assigned to a
given packet should not be changed after its start and �nish
tags have been assigned (i.e., after it has reached the front
of its 
ow).

It is conceivable that in some environments it may be de-
sirable to dynamically determine a suitable weight for each

ow. For instance, the weight of a 
ow may be chosen to be
proportional to the recent demand of that 
ow (i.e., recent
arrival rate of data on the 
ow), proportional to the size of
the pending packet queue for the 
ow, or as a function of
errors experienced by the 
ow.

In centralized implementations of fair queueing algorithm,
dynamic changes in weights can result in signi�cant increases
in time complexity of the algorithm. However, for DFS, this
is not the case.

4.7 Adaptive DFS
DFS protocol uses three parameters: Scaling factor, Colli-
sionWindow and �. These parameters can be chosen adap-
tively to improve performance. There is a trade-o� be-
tween throughput and fairness achieved by the choice of
Scaling factor as seen in Section 5. Since CollisionWindow
determines the contention window values chosen after col-
lision, a larger value of this parameter may be chosen with
increased contention on the channel. Future work will con-
sider adaptive mechanisms to choose appropriate parame-
ters dynamically.

5. PERFORMANCE EVALUATION
In this section, we present performance evaluation results
for the proposed DFS protocol. Performance evaluation is
performed using a modi�ed version of the ns-2 simulator
[6]. The ns-2 simulator includes a module to simulate the
DCF function in IEEE 802.11. We modi�ed this module to
simulate the proposed DFS protocol as well. The channel
bandwidth is assumed to be 2 Mbps. The virtual clock is
not used in the implementation as discussed in Section 4.1.



In the simulation environment, the number of nodes on the
LAN is n, where we have considered n � 128. On a LAN
with n nodes, we set up n=2 
ows (n is always chosen to be
an even number) { 
ow i is set up from node i to node i+1
(the nodes are numbered 0 through n � 1). The choice of
the destination nodes for the 
ows is somewhat arbitrary,
and any destination could have been chosen for each 
ow
without a�ecting the results.

Unless otherwise speci�ed, the following assumptions are
made:6 (i) each 
ow is backlogged throughout the dura-
tion of the simulation. (ii) all packets on all 
ows contain
584 bytes.7 (iii) Scaling Factor is 0.02. (iv) CollisionWin-
dow is 4 slots. (v) Sum of weights of all 
ows add to 1. (vi)
For the exponential and square-root mapping schemes, the
Threshold = 80. For the exponential mapping, K1 = 80 and
K2 = 0:002. (vii) The duration of simulations is 6 seconds.

Figure 7 considers the case when the n=2 
ows (in case of a
LAN with n nodes) have identical weight { the chosen weight
for each 
ow is 2=n. This �gure plots the ratio (through-
put of a 
ow / 
ow weight) for all 
ows { the number of
nodes n is di�erent in Figures 7(a), (b) and (c). Note that
the horizontal axes in Figure 7 denote the destination node
for the 
ow whose (throughput/weight) ratio is plotted in
the �gure. Results are plotted for IEEE 802.11, and the
DFS scheme using the linear, exponential and square-root
mappings. The curves labelled Linear, EXP and SQRT cor-
respond to the DFS scheme using the respective mapping
schemes. Ideally, the (throughput/weight) curve should be

at, since all 
ows are always backlogged. Observe that
the three DFS schemes do achieve a nearly 
at curve. On
the other hand, observe that IEEE 802.11 results in unfair
performance.

For environments where all 
ows are always backlogged, we
evaluate a fairness index [13] as follows, where Tf denotes
throughput of 
ow f , and �f denotes weight of 
ow f .

fairness index =

�P
f Tf=�f

�2
number of 
ows �Pf (Tf=�f )

2

Figure 8 studies the variation in fairness index (as de�ned
above) and aggregate throughput with the number of 
ows {
aggregate throughput is obtained by adding the throughput
of all 
ows. Each 
ow is assigned a weight of 2=n (with
n=2 
ows). Average throughput and average fairness in-
dex over ten runs is considered here. Observe that DFS
achieves very high fairness, while fairness achieved by IEEE
802.11 is often poor. However, the aggregate throughput

6The evaluation presented here di�ers somewhat from [24].
For instance, the virtual clock �eld is eliminated from the
packet header in this paper.
7584 bytes comprise of 512 data bytes and 72 header bytes.
The header bytes included in packet size are counted towards
bandwidth allocated to a 
ow. Counting header bytes to-
wards allocated bandwidth discourages small packets. How-
ever, note that DFS will perform just as fairly even if header
bytes are not counted towards useful work performed for a

ow. The exponential and square-root mappings have an ex-
tra 4 bytes in the MAC header for the �current �eld. These
4 bytes are not counted in the throughput calculation for
uniformity.

achieved by 802.11 may be higher. IEEE 802.11 can some-
times achieve higher throughput because the DFS scheme
tends to choose greater backo� intervals than 802.11, result-
ing in higher overhead for DFS.

Now, when the three mappings for the DFS scheme are con-
sidered, as seen in Figure 8, the three mappings yield com-
parable throughput and comparable fairness. As seen later,
the exponential and square-root mappings provide bene�t
when the backlogged 
ows have relatively small weights.

Figure 9 plots fairness index and aggregate throughput as
a function of the Scaling Factor. An average of throughput
and fairness index over four runs is considered here. Here
we only consider the linear mapping. In this case, six 
ows
are simulated with weights being 1/2, 1/4, 1/8, 1/16, 1/32,
and 1/32. Observe that as the Scaling Factor is increased
fairness increases. The throughput initially improves when
the Scaling Factor is increased, but then degrades after the
Scaling Factor is increased further. A larger Scaling Factor
results in large backo� intervals, leading to a greater over-
head. When the Scaling Factor is very small, there are too
many collisions, resulting in low throughput { when the Scal-
ing Factor is increased, collisions reduce, and throughput
improves. However, larger when Scaling Factor is increased
further, throughput degradation due to large backo� inter-
vals starts to dominate, and the aggregate throughput de-
creases. Figure 9 reinforces the observation that a trade-o�
exists between aggregate throughput and fairness.

Now we consider the impact of di�ering packet sizes among

ows. In Figure 10 we evaluate 3 
ows each with weight
1/3, but their packet sizes are 584, 328 and 200 bytes, re-
spectively. The �gure plots (throughput/weight) for the
three 
ows. Observe that the curve is horizontal for DFS
schemes. The DFS scheme can handle packets of di�ering
sizes without a�ecting fairness. We also simulated environ-
ments where packet sizes vary within each 
ow. The results
are similar to those reported in Figure 10, and are omitted
here for brevity.
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Figure 10: Fairness with variable packet sizes

Now consider the case of four 
ows: 
ow 0! 1 with weight
0.02, and 
ow 2! 3 with a weight of 0.03, 
ow 4! 5 with
a weight 0.05 and 
ow 6! 7 with a weight of 0.9. First as-
sume that all four 
ows are always backlogged. Results for
this case are shown in Figure 11 { this �gure plots through-
put/weight for the four 
ows. Observe that all three DFS
mappings are fair, although linear mapping gives slightly
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Figure 7: Comparison of IEEE 802.11 and DFS
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higher throughput.

Now, let us change the behavior of 
ow 6 ! 7 (weight 0.9)
such that it is initially on for 0.3 seconds, then o� for 5.4 sec-
ond, and on for remaining 0.3 seconds of simulation. Thus,
this 
ow is on for 10% of the time. In this case, aggregate
throughput achieved by the three lower weight 
ows using
the three mapping schemes is approximately: (a) Linear:
79 Kbps, (b) Exponential: 95 Kbps, and (c) Square-root:
90 Kbps. Exponential and square-root schemes yield 20%
and 14% improvement over Linear. The fairness achieved
by the exponential and square-root schemes remains high,
in addition to the higher throughput.

The above example illustrates that the square-root and ex-
ponential mappings can yield better throughput than the
linear mapping (along with good fairness) when the aggre-
gate weight of backlogged 
ows is small. On the other hand,
when some backlogged 
ows have large weights { their back-
o� intervals are small and the idle time while counting down
the backo� interval is bounded by the smallest backo� in-
terval. Therefore, when at least one 
ow with a large weight
is backlogged, the gain due to exponential and square-root
mappings is not signi�cant.
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Figure 11: Fairness with variable weight (all 
ows
are always backlogged)

The results reported so far evaluate fairness of the pro-
posed algorithm over somewhat longer time intervals. We
now consider fairness over shorter intervals. A variation of
802.11 referred to as 802.11 Scaled is also considered here.
802.11 Scaled chooses contention window values in the inter-
val [0,cw], where cw is the maximum backo� interval picked
by DFS after randomization. This allows us to study the im-
pact of proportionally large windows on fairness in 802.11.
Figure 12 illustrates the short-term behavior of the DFS
protocol in comparison to 802.11. For 8 
ows, each with
weight 1/8, we count the number of packets (all packets are
size 584 bytes) serviced from each 
ow over a window of
size 0.04 second, where the window itself slides every 0.02
second. Figure 12 plots the frequency distribution of the
number of packets received in a single window interval. Ob-
serve that DFS always receives either 1 or 2 packets in all
intervals. 802.11 receives 0 packets in some intervals show-
ing that some 
ows were put into backo� unfairly during
those intervals. 802.11 Scaled performs better than 802.11
by achieving a smaller spread than 802.11. We obtained
similar plot for higher number of 
ows as shown in [11]. In
general, note that a wider distribution in Figure 12 is an

indication of poorer short-term fairness.
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Figure 13 shows the convergence characteristics of the fair-
ness index. This plot is for 24 
ows each with a weight
of 1/24. Note that DFS converges to a high fairness index
very soon, when the interval over which the fairness is evalu-
ated is increased { [15] has considered a similar approach for
evaluating short-term fairness. Observe that convergence of
802.11 Scaled is faster as compared to 802.11. This shows
that the performance of 802.11 can be improved signi�cantly
by choosing proportionally large initial contention windows.
Yet DFS achieves higher fairness index than 802.11 and
802.11 Scaled both. Hence, we believe that high fairness
using DFS is achieved due to three factors: choice of pro-
portionally large initial backo� intervals, choice of a small
window after collision, and the fact that the initial window
is chosen over an interval that is typically a small fraction
of the chosen window size.
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6. CONCLUSIONS
This paper considers the issue of fair scheduling in a wire-
less LAN. The objective here is to develop a fully distributed
algorithm for scheduling packet transmissions such that dif-
ferent 
ows are allocated bandwidth in proportion of their
weights. The paper proposes a Distributed Fair Scheduling
(DFS) approach obtained by modifying the Distributed Co-
ordination Function(DCF) in IEEE 802.11 standard. The
similarities between DFS and DCF would make it easier to
incorporate DFS in a modi�ed version of 802.11.



Performance results show that the proposed protocol can,
in fact, allocate bandwidth in proportion to the weights of
the 
ows sharing the channel. We propose various mappings
that can be used to choose the appropriate backo� interval
for a packet. It is shown that all proposed mapping schemes
achieve good fairness. However, the throughput achieved by
the exponential and square-root mapping schemes is higher
than that with linear mapping when the backlogged 
ows
have low weights. In general, a trade-o� exists between fair-
ness and achievable throughput on the LAN.

Note that the ideas presented here may be applied to wired
LANs as well. Also, these ideas may be extended to multi-
hop wireless networks [24]. Several issues, in addition to
those described in this paper, need to be investigated to
achieve a better understanding of the DFS protocol.
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