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Data-Parallel Algorithms
• Efficient algorithms require efficient building blocks

• Five data-parallel building blocks

• Map

• Gather & Scatter

• Reduce

• Scan

• Sort

• Advanced data structures:

• Sparse matrices

• Hash tables

• Task queues



Sample Motivating Application
• How bumpy is a surface that we

represent as a grid of samples?

• Algorithm: 

• Loop over all elements

• At each element, compare the value of that element to the average of its 
neighbors (“difference”). Square that difference.

• Now sum up all those differences.

• But we don’t want to sum all the diffs that are 0.

• So only sum up the non-zero differences.

• This is a fake application—don’t take it too seriously.

Picture courtesy http://www.artifice.com



Sample Motivating Application

for all samples:

neighbors[x,y] =
 0.25 * ( value[x-1,y]+ 
    value[x+1,y]+
    value[x,y+1]+
    value[x,y-1] ) )

diff = (value[x,y] - neighbors[x,y])^2

result = 0

for all samples where diff != 0:

result += diff

return result
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The Map Operation

• Given: 

• Array or stream of data elements A

• Function f(x)

• map(A, f) = applies f(x) to all ai∈ A

• How does this map to a data-parallel processor?
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Scatter vs. Gather
• Gather: p = a[i]

• Scatter: a[i] = p

• How does this map to a data-parallel processor?



Sample Motivating Application
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Parallel Reductions
• Given: 

• Binary associative operator ⊕ with identity I

• Ordered set s = [a₀, a₁, …, an-1] of n elements

• reduce(⊕, s) returns a₀ ⊕ a₁ ⊕ … ⊕ an-1

• Example: 
 reduce(+, [3 1 7 0 4 1 6 3]) = 25

• Reductions common in parallel algorithms

• Common reduction operators are +, ×, min and max

• Note floating point is only pseudo-associative



Efficiency

• Work efficiency:

• Total amount of work done over all processors

• Step efficiency:

• Number of steps it takes to do that work

• With parallel processors, sometimes you’re willing to 
do more work to reduce the number of steps

• Even better if you can reduce the amount of steps and 
still do the same amount of work



Parallel Reductions
• 1D parallel reduction: 

• add two halves of domain together repeatedly...

• … until we’re left with a single row

+
N

N/2
N/4… 1

+ +



Parallel Reductions
• 1D parallel reduction: 

• add two halves of domain together repeatedly...

• … until we’re left with a single row

+
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O(log2N) steps, O(N) work

+ +



Multiple 1D Parallel Reductions
• Can run many reductions in parallel

• Use 2D grid and reduce one dimension

+

MxN

MxN/2
MxN/4… Mx1

+ +



Multiple 1D Parallel Reductions
• Can run many reductions in parallel

• Use 2D grid and reduce one dimension

+

MxN

MxN/2
MxN/4… Mx1

+ +

O(log2N) steps, O(MN) work



2D reductions
• Like 1D reduction, only reduce in both directions simultaneously

• Note: can add more than 2x2 elements per step 

• Trade per-pixel work for step complexity

• Best perf depends on specific hardware (cache, etc.)



Parallel Reduction Complexity

• log(n) parallel steps, each step S does n/2s independent ops

• Step Complexity is O(log n)

• Performs n/2 + n/4 + … + 1 = n-1 operations 

• Work Complexity is O(n)—it is work-efficient 

• i.e. does not perform more operations than a sequential algorithm

• With p threads physically in parallel (p processors), 
time complexity is O(n/p + log n) 

• Compare to O(n) for sequential reduction



Sample Motivating Application

for all samples:

neighbors[x,y] =
 0.25 * ( value[x-1,y]+  
    value[x+1,y]+
    value[x,y+1]+
    value[x,y-1] ) )

diff = (value[x,y] - neighbors[x,y])^2

result = 0

for all samples where diff != 0:

result += diff

return result



Stream Compaction

• Input: stream of 1s and 0s
[1 0 1 1 0 0 1 0]

• Operation:“sum up all elements before you”

• Output: scatter addresses for “1” elements
[0 1 1 2 3 3 3 4]

• Note scatter addresses for red elements are packed!

A B C D E F G H

A C D G

Input

Output



Common Situations in Parallel Computation

• Many parallel threads that need to partition data

• Split

• Many parallel threads and variable output per thread

• Compact / Expand / Allocate

• More complicated patterns than one-to-one or all-to-
one

• Instead all-to-all



Split Operation
• Given an array of true and false elements (and 

payloads)

• Return an array with all true elements at the beginning

• Examples: sorting, building trees

FTFFTFFT

FFFFFTTT

36140713

31471603

Flag

Payload



Variable Output Per Thread: Compact

• Remove null elements

• Example: collision detection

3 7 4 1 3

3 0 7 0 4 1 0 3



Variable Output Per Thread
• Allocate Variable Storage Per Thread

• Examples: marching cubes, geometry generation

A

B

C D

E

F

G

2 1 0 3 2

H



“Where do I write my output?”

• In all of these situations, each thread needs to answer 
that simple question

• The answer is:

• “That depends on how much
the other threads need to write!”

• In a serial processor, this is simple

• “Scan” is an efficient way to answer this question in 
parallel



Parallel Prefix Sum (Scan)
• Given an array A = [a0, a1, …, an-1] 

and a binary associative operator ⊕ with identity I, 

• scan(A) = [I, a0, (a0 ⊕ a1), …, (a0 ⊕ a1 ⊕ … ⊕ an-2)]

• Example:  if ⊕ is addition, then scan on the set

• [3 1 7 0 4 1 6 3]

• returns the set 

• [0 3 4 11 11 15 16 22]



Segmented Scan
• Example:  if ⊕ is addition, then scan on the set

• [3 1 7 | 0 4 1 | 6 3]

• returns the set 

• [0 3 4 | 0 0 4 | 0 6]

• Same computational complexity as scan, but 
additionally have to keep track of segments (we use 
head flags to mark which elements are segment 
heads)

• Useful for nested data parallelism (quicksort)



Quicksort

[5 3 7 4 6]   # initial input
[5 5 5 5 5]   # distribute pivot across segment
[f f t f t]   # input > pivot?
[5 3 4][7 6]  # split-and-segment
[5 5 5][7 7]  # distribute pivot across segment
[t f f][t f]  # input >= pivot?
[3 4 5][6 7]  # split-and-segment, done!



O(n log n) Scan
!" !# !$ !% !& !' !( !)

*!"++!", *!"++!#, *!#++!$, *!$++!%, *!%++!&, *!&++!', *!'++!(, *!(++!),

*!"++!", *!"++!#, *!"++!$, *!"++!%, *!#++!&, *!$++!', *!%++!(, *!&++!),

*!"++!", *!"++!#, *!"++!$, *!"++!%, *!"++!&, *!"++!', *!"++!(, *!"++!),

!-#

!-$

!-%

• Step efficient (log n steps)
• Not work efficient (n log n work)



O(n) Scan

!" !# !$ !% !& !' !( !)

!" *!"++!#, !$ *!$++!%, !& *!&++!', !( *!(++!),

!" *!"++!#, !$ *!"++!%, !& *!&++!', !( *!&++!),

!" *!"++!#, !$ *!"++!%, !& *!&++!', !( *!"++!),

!"-.$

!"-.#

!"-."

! "! #"!$$"%& #"!$$"'& #"!$$"(& #"!$$")& #"!$$"*& #"!$$"+&

"! "' #"!$$"%& ") #"!$$"(& "+ #"!$$"*&

"! #"!$$"%& "' ") #")$$"*& "+ #"!$$"(&

"! #"!$$"%& "' #"!$$"(& ") #")$$"*& "+

"! #"!$$"%& "' #"!$$"(& ") #")$$"*& "+ #"!$$",&

!"#$

!"-.!

!"-.%

!"-.'

• Not step efficient (2 log n steps)
• Work efficient (O(n) work)



Application: Stream Compaction

• 1M elements: 
~0.6-1.3 ms

• 16M elements: 
~8-20 ms

• Perf depends on # 
elements retained

30

Informally, stream compaction is a filtering operation: from an input vector, it selects a
subset of this vector and packs that subset into a dense output vector. Figure 39-9
shows an example. More formally, stream compaction takes an input vector vi and a
predicate p, and outputs only those elements in vi for which p(vi) is true, preserving the
ordering of the input elements. Horn (2005) describes this operation in detail. 

Stream compaction requires two steps, a scan and a scatter. 

1. The first step generates a temporary vector where the elements that pass the predi-
cate are set to 1 and the other elements are set to 0. We then scan this temporary
vector. For each element that passes the predicate, the result of the scan now con-
tains the destination address for that element in the output vector. 

2. The second step scatters the input elements to the output vector using the addresses
generated by the scan. 

Figure 39-10 shows this process in detail. 

39.3  Applications of Scan 867

Input

OutputA C D G

A B C D E F G H

Figure 39-9. Stream Compaction Example
Given an input vector, stream compaction outputs a packed subset of that vector, choosing only
the input elements of interest (marked in gray).

A C D G

A B C D E F G H

Scan

Scatter input to output, 
using scan result as scatter
address

Set a “1” in each
gray input

0 1 1 2 3 3 3 4

1 0 1 1 0 0 1 0

Input: we want to preserve 
the gray elements A B C D E F G H

Figure 39-10. Scan and Scatter
Stream compaction requires one scan to determine destination addresses and one vector scatter
operation to place the input elements into the output vector.

639_gems3_ch39 6/28/2007 2:28 PM Page 867
FIRST PROOFS



Application: Radix Sort

31

• Sort 16M 32-bit key-value 
pairs: ~120 ms

• Perform split operation on 
each bit using scan

• Can also sort each block and 
merge
• Efficient merge on GPU an 

active area of research

872

Thus for k-bit keys, radix sort requires k steps. Our implementation requires one scan
per step. 

The fundamental primitive we use to implement each step of radix sort is the split
primitive. The input to split is a list of sort keys and their bit value b of interest on
this step, either a true or false. The output is a new list of sort keys, with all false sort
keys packed before all true sort keys. 

We implement split on the GPU in the following way, as shown in Figure 39-14. 

1. In a temporary buffer in shared memory, we set a 1 for all false sort keys (b = 0)
and a 0 for all true sort keys. 

2. We then scan this buffer. This is the enumerate operation; each false sort key now
contains its destination address in the scan output, which we will call f. These first
two steps are equivalent to a stream compaction operation on all false sort keys. 

Chapter 39  Parallel Prefix Sum Scan with CUDA

Scatter input using d as
scatter address

Split based on least
significant bit b

e = Set a “1” in each “0” input

f = Scan the 1s

totalFalses = e[max] + f[max]

0 1 0 0 1 1 1 0

1 0 1 1 0 0 0 1

0 1 1 2 3 3 3 0

t = i – f + totalFalses

d = b ? t : f 

0-0+4
=4

1-1+4
=4

2-1+4
=5

3-2+4
=5

4-3+4
=5

5-3+4
=6

6-3+4
=7

7-3+4
=8

0 4 1 2 5 6 7 3

Input100 111 010 110 011 101 001 000

100 010 110 000 111 011 101 001

100 111 010 110 011 101 001 000

Figure 39-14. The split Operation Requires a Single Scan and Runs in Linear Time with the
Number of Input Elements
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GPU Design Principles

• Data layouts that:

• Minimize memory traffic

• Maximize coalesced memory access

• Algorithms that:

• Exhibit data parallelism

• Keep the hardware busy

• Minimize divergence



Dense Matrix Multiplication

• for all elements E in destination matrix 
P

• Pr,c = Mr • Nc

M P
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T
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W
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T
H

WIDTH WIDTH

N



Dense Matrix Multiplication
• P = M * N of size WIDTH x WIDTH

• With blocking:

• One thread block handles one BLOCK_SIZE 
x BLOCK_SIZE sub-matrix Psub of P

• M and N are only loaded 
WIDTH / BLOCK_SIZE
times from global
memory

• Great saving of
memory bandwidth!

M

N

P

Psub

BLOCK_SIZEBLOCK_SIZE BLOCK_SIZE BLOCK_SIZE

B
L
O
C
K
_S
IZ
E

B
L
O
C
K
_S
IZ
E
B
L
O
C
K
_S
IZ
E
B
L
O
C
K
_S
IZ
E

W
ID
T
H

W
ID
T
H

WIDTH WIDTH

N



Dense Matrix Multiplication
• Data layouts that:

• Minimize memory traffic

• Maximize coalesced memory access

• Algorithms that:

• Exhibit data parallelism

• Keep the hardware busy

• Minimize divergence
M
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Sparse Matrix-Vector Multiply: What’s Hard?

• Dense approach is wasteful

• Unclear how to map work to parallel processors 

• Irregular data access



Sparse Matrix Formats

Structured                                                            Unstructured
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Diagonal Matrices

• Diagonals should be mostly populated

• Map one thread per row

• Good parallel efficiency

• Good memory behavior [column-major storage]

-2 0 1



Irregular Matrices: ELL

• Assign one thread per row again

• But now:

• Load imbalance hurts parallel efficiency

0 2

0 1 2 3 4 5

0 2 3

0 1 2

1 2 3 4 5

5

padding



Irregular Matrices: COO

• General format; insensitive to sparsity pattern, but ~3x 
slower than ELL

• Assign one thread per element, combine results from all 
elements in a row to get output element

• Req segmented reduction, communication btwn threads

00 02

10 11 12 13 14 15

20 22 23

30 31 32

41 42 43 44 45

55
no padding!



Thread-per-{element,row}



Irregular Matrices: HYB

• Combine regularity of ELL + flexibility of COO

0 2

0 1 2

0 2 3

0 1 2

1 2 3

5

13 14 15

44 45

“Typical” “Exceptional”



SpMV: Summary
• Ample parallelism for large matrices

• Structured matrices (dense, diagonal): straightforward

• Take-home message: Use data structure appropriate to your matrix

• Sparse matrices: Issue: Parallel efficiency

• ELL format / one thread per row is efficient

• Sparse matrices: Issue: Load imbalance

• COO format / one thread per element is insensitive to matrix structure

• Conclusion: Hybrid structure gives best of both worlds

• Insight: Irregularity is manageable if you regularize the common case



Composition
Samples / 
Fragments

Subpixels 
locations

Pixel

S1

S2
S3

S4

Fragment Generation

Composite

Filter

Final pixels

Subpixels
(position, color)

Fragments 
(position, depth, color)



Pixel-Parallel Composition

Pixel i+1Pixel i

Subpixel 0 Subpixel 1 Subpixel 0 Subpixel 1



Sample-Parallel Composition

Pixel i+1Pixel i

Subpixel 0 Subpixel 1 Subpixel 0 Subpixel 1

Pixel i+1Pixel i

Segmented Scan

Segmented Reduction

Subpixel 0 Subpixel 1 Subpixel 0 Subpixel 1



Hash Tables & Sparsity

• Lefebvre and Hoppe, Siggraph 2006



Scalar Hashing

key

#

Linear Probing

key

#2

#1

Double Probing

key

#1

#2

Chaining



Scalar Hashing: Parallel Problems

key

#

key

#2

#1

key

#1

#2

• Construction and Lookup

• Variable time/work per entry

• Construction

• Synchronization / shared access to data structure



Parallel Hashing: The Problem
• Hash tables are good for sparse data.

• Input: Set of key-value pairs to place in the hash table

• Output: Data structure that allows:

• Determining if key has been placed in hash table

• Given the key, fetching its value

• Could also:

• Sort key-value pairs by key (construction)

• Binary-search sorted list (lookup)

• Recalculate at every change



Parallel Hashing: What We Want

• Fast construction time

• Fast access time

• O(1) for any element, O(n) for n elements in parallel

• Reasonable memory usage

• Algorithms and data structures may sit at different places 
in this space

• Perfect spatial hashing has good lookup times and 
reasonable memory usage but is very slow to construct



Level 1: Distribute into buckets
Keys

Bucket sizes

Data distributed into buckets

Atomic 
add

Local offsets

8 5 6 8

1 3 7 0 5 2 4 6 8 13 190

h

Bucket ids

Global offsets



Parallel Hashing: Level 1

• Good for a coarse categorization

• Possible performance issue: atomics

• Bad for a fine categorization

• Space requirements for n elements to (probabilistically) 
guarantee no collisions are O(n2)



Hashing in Parallel
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Cuckoo Hashing Construction

0
1

0
1

1

0

1

0

h1

1

1

0

0

h2 T1 T2

• Lookup procedure: in parallel, for each element:

• Calculate h1 & look in T1;  

• Calculate h2 & look in T2; still O(1) lookup



Cuckoo Construction Mechanics

• Level 1 created buckets of no more than 512 items

• Average: 409; probability of overflow: < 10-6

• Level 2: Assign each bucket to a thread block, construct 
cuckoo hash per bucket entirely within shared memory

• Semantic: Multiple writes to same location must have one 
and only one winner

• Our implementation uses 3 tables of 192 elements each 
(load factor: 71%)

• What if it fails? New hash functions & start over.



Timings on random voxel data



Hashing: Big Ideas

• Classic serial hashing techniques are a poor fit for a GPU.

• Serialization, load balance

• Solving this problem required a different algorithm

• Both hashing algorithms were new to the parallel literature

• Hybrid algorithm was entirely new



Trees: Motivation

• Query: Does object X 
intersect with 
anything in the 
scene?

• Difficulty: X and the 
scene are dynamic

• Goal: Data structure 
that makes this query 
efficient (in parallel) Images from HPCCD: Hybrid Parallel 

Continuous Collision Detection, Kim 
et al., Pacific Graphics 2009



k-d trees

Images from Wikipedia, “Kd-tree”



Generating Trees

• Increased parallelism with depth

• Irregular work generation



D E FD E F

Tree Construction on a GPU

• At each stage, any node can generate 0, 1, or 2 new nodes

• Increased parallelism, but some threads wasted

• Compact after each step?

0 A

B C

D E F0 21 3

0 1
B C

d0 f0 d1 e1 f1

left right



Tree Construction on a GPU

• Compact reduces overwork, but …

• … requires global compact operation per step

• Also requires worst-case storage allocation

0

B C

A

D E F0 1 2

0 1
B C

D E F

d0 f0 d1 e1 f1

left right

D E F



Assumptions of Approach

• Fairly high computation cost per step

• Smaller cost -> runtime dominated by overhead

• Small branching factor

• Makes pre-allocation tractable

• Fairly uniform computation per step

• Otherwise, load imbalance

• No communication between threads at all



Work Queue Approach

• Allocate private work queue of tasks per 
core

• Each core can add to or remove work from 
its local queue

• Cores mark self as idle if {queue 
exhausts storage, queue is empty}

• Cores periodically check global idle 
counter

• If global idle counter reaches threshold, 
rebalance work

Fast Hierarchy Operations on GPU 
Architectures, Lauterbach et al.



Static Task List

Input Input Input Input Input

SM SM SM SM SM

Output

Atomic Ptr

restart
kernel

Next 4 slides: Daniel 
Cederman and Philippas 
Tsigas, On Dynamic Load 

Balancing on Graphics 
Processors. Graphics 

Hardware 2008, June 2008. 



Blocking Dynamic Task Queue

SM SM SM SM SM

Queue

Lock

Lock

• Poor performance

• Scales poorly with 
# of blocks



Non-Blocking Dynamic Task Queue

SM SM SM SM SM

Atomic Head Ptr

Queue

Atomic Tail Ptr

lazy update
of pointers

• Better 
performance

• Scales well with 
small # of blocks, 
but poorer with 
large



Work Stealing

I/O
Deque

I/O
Deque

I/O
Deque

I/O
Deque

I/O 
Deque

SM SM SM SM SM

Lock Lock ...

• Best performance and scalability

• Recent work by our group explored task donating

• Win for memory consumption overall



Big-Picture Questions

• Relative cost of computation vs. overhead

• Frequency of global communication

• Cost of global communication

• Need for communication between GPU cores?

• Would permit efficient in-kernel work stealing



DS Research Challenges
• String-based algorithms

• Building suffix trees (DNA sequence alignment)

• Graphs (vs. sparse matrix) and trees

• Dynamic programming

• Neighbor queries (kNN)

• Tuning

• True “parallel” data structures (not parallel versions of 
serial ones)?

•  Incremental data structures
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