Parallel Algorithms and Data Structures
CS 448s, Stanford University
20 April 2010

John Owens
Associate Professor, Electrical and Computer Engineering
UC Davis
Data-Parallel Algorithms

• Efficient algorithms require efficient building blocks

• Five data-parallel building blocks
 • Map
 • Gather & Scatter
 • Reduce
 • Scan
 • Sort

• Advanced data structures:
 • Sparse matrices
 • Hash tables
 • Task queues
Sample Motivating Application

• How bumpy is a surface that we represent as a grid of samples?

• Algorithm:
 • Loop over all elements
 • At each element, compare the value of that element to the average of its neighbors (“difference”). Square that difference.
 • Now sum up all those differences.
 • But we don’t want to sum all the diffs that are 0.
 • So only sum up the non-zero differences.
 • This is a fake application—don’t take it too seriously.
Sample Motivating Application

for all samples:

neighbors[x,y] =
 0.25 * (value[x-1,y] +
 value[x+1,y] +
 value[x,y+1] +
 value[x,y-1])

diff = (value[x,y] - neighbors[x,y])^2

result = 0

for all samples where diff != 0:
 result += diff

return result
Sample Motivating Application

for all samples:

\[\text{neighbors}[x,y] = 0.25 \times (\text{value}[x-1,y] + \text{value}[x+1,y] + \text{value}[x,y+1] + \text{value}[x,y-1]) \]

\[\text{diff} = (\text{value}[x,y] - \text{neighbors}[x,y])^2 \]

\[\text{result} = 0 \]

for all samples where \(\text{diff} \neq 0 \):

\[\text{result} += \text{diff} \]

return result
The Map Operation

- Given:
 - Array or stream of data elements A
 - Function $f(x)$
- $\text{map}(A, f) = \text{applies } f(x) \text{ to all } a_i \in A$
- How does this map to a data-parallel processor?
Sample Motivating Application

for all samples:

\[
\text{neighbors}[x,y] = 0.25 \times (\text{value}[x-1,y] + \text{value}[x+1,y] + \text{value}[x,y+1] + \text{value}[x,y-1])
\]

\[
\text{diff} = (\text{value}[x,y] - \text{neighbors}[x,y])^2
\]

result = 0

for all samples where diff \(!=\) 0:

\[
\text{result} += \text{diff}
\]

return result
Scatter vs. Gather

- Gather: \(p = a[i] \)
- Scatter: \(a[i] = p \)
- How does this map to a data-parallel processor?
Sample Motivating Application

for all samples:

\[
\text{neighbors}[x,y] = 0.25 \times (\text{value}[x-1,y]+ \text{value}[x+1,y]+ \text{value}[x,y+1]+ \text{value}[x,y-1])
\]

\[
\text{diff} = (\text{value}[x,y] - \text{neighbors}[x,y])^2
\]

\[
\text{result} = 0
\]

for all samples where \(\text{diff} \neq 0 \):

\[
\text{result} += \text{diff}
\]

return result
Parallel Reductions

- Given:
 - Binary associative operator \oplus with identity I
 - Ordered set $s = [a_0, a_1, ..., a_{n-1}]$ of n elements
 - $\text{reduce}(\oplus, s)$ returns $a_0 \oplus a_1 \oplus ... \oplus a_{n-1}$

- Example:
 - $\text{reduce}(+, [3 \ 1 \ 7 \ 0 \ 4 \ 1 \ 6 \ 3]) = 25$

- Reductions common in parallel algorithms
 - Common reduction operators are $+, \times, \text{min}$ and max
 - Note floating point is only pseudo-associative
Efficiency

- Work efficiency:
 - Total amount of work done over all processors

- Step efficiency:
 - Number of steps it takes to do that work

- With parallel processors, sometimes you’re willing to do more work to reduce the number of steps

- Even better if you can reduce the amount of steps and still do the same amount of work
Parallel Reductions

- 1D parallel reduction:
 - add two halves of domain together repeatedly...
 - ... until we’re left with a single row
Parallel Reductions

- 1D parallel reduction:
 - add two halves of domain together repeatedly...
 - ... until we’re left with a single row

$O(\log_2 N)$ steps, $O(N)$ work
Multiple 1D Parallel Reductions

- Can run many reductions in parallel
- Use 2D grid and reduce one dimension
Multiple 1D Parallel Reductions

- Can run many reductions in parallel
- Use 2D grid and reduce one dimension

$O(\log_2 N)$ steps, $O(MN)$ work
2D reductions

- Like 1D reduction, only reduce in both directions simultaneously

- Note: can add more than 2x2 elements per step

- Trade per-pixel work for step complexity

- Best perf depends on specific hardware (cache, etc.)
Parallel Reduction Complexity

- \(\log(n) \) parallel steps, each step \(S \) does \(n/2^s \) independent ops
 - Step Complexity is \(O(\log n) \)
- Performs \(n/2 + n/4 + \ldots + 1 = n-1 \) operations
 - Work Complexity is \(O(n) \)—it is work-efficient
 - i.e. does not perform more operations than a sequential algorithm
- With \(p \) threads physically in parallel (\(p \) processors),
 time complexity is \(O(n/p + \log n) \)
 - Compare to \(O(n) \) for sequential reduction
Sample Motivating Application

for all samples:

\[
\text{neighbors}[x,y] = 0.25 \times (\text{value}[x-1,y] + \text{value}[x+1,y] + \text{value}[x,y+1] + \text{value}[x,y-1])
\]

\[
\text{diff} = (\text{value}[x,y] - \text{neighbors}[x,y])^2
\]

result = 0

for all samples where diff != 0:

\[
\text{result} += \text{diff}
\]

return result
Stream Compaction

- Input: stream of 1s and 0s
 \[1\ 0\ 1\ 1\ 0\ 0\ 1\ 0\]
- Operation: “sum up all elements before you”
- Output: scatter addresses for “1” elements
 \[0\ 1\ 1\ 2\ 3\ 3\ 3\ 4\]
- Note scatter addresses for red elements are packed!
Common Situations in Parallel Computation

- Many parallel threads that need to partition data
 - Split
- Many parallel threads and variable output per thread
 - Compact / Expand / Allocate
- More complicated patterns than one-to-one or all-to-one
 - Instead all-to-all
Split Operation

- Given an array of true and false elements (and payloads)

<table>
<thead>
<tr>
<th>Flag</th>
<th>Payload</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>3</td>
</tr>
<tr>
<td>F</td>
<td>1</td>
</tr>
<tr>
<td>F</td>
<td>7</td>
</tr>
<tr>
<td>T</td>
<td>0</td>
</tr>
<tr>
<td>F</td>
<td>4</td>
</tr>
<tr>
<td>T</td>
<td>1</td>
</tr>
<tr>
<td>F</td>
<td>6</td>
</tr>
<tr>
<td>F</td>
<td>3</td>
</tr>
<tr>
<td>T</td>
<td>3</td>
</tr>
<tr>
<td>F</td>
<td>0</td>
</tr>
<tr>
<td>F</td>
<td>6</td>
</tr>
<tr>
<td>F</td>
<td>1</td>
</tr>
<tr>
<td>T</td>
<td>7</td>
</tr>
<tr>
<td>F</td>
<td>4</td>
</tr>
<tr>
<td>T</td>
<td>1</td>
</tr>
<tr>
<td>F</td>
<td>3</td>
</tr>
<tr>
<td>T</td>
<td>0</td>
</tr>
<tr>
<td>F</td>
<td>6</td>
</tr>
<tr>
<td>F</td>
<td>1</td>
</tr>
<tr>
<td>T</td>
<td>7</td>
</tr>
<tr>
<td>F</td>
<td>4</td>
</tr>
<tr>
<td>T</td>
<td>1</td>
</tr>
<tr>
<td>F</td>
<td>3</td>
</tr>
</tbody>
</table>

- Return an array with all true elements at the beginning

- Examples: sorting, building trees
Variable Output Per Thread: Compact

- Remove null elements

- Example: collision detection
Variable Output Per Thread

• Allocate Variable Storage Per Thread

• Examples: marching cubes, geometry generation
“Where do I write my output?”

- In all of these situations, each thread needs to answer that simple question

- The answer is:

- “That depends on how much the other threads need to write!”

- In a serial processor, this is simple

- “Scan” is an efficient way to answer this question in parallel
Parallel Prefix Sum (Scan)

- Given an array $A = [a_0, a_1, ..., a_{n-1}]$ and a binary associative operator \oplus with identity I,

$$\text{scan}(A) = [I, a_0, (a_0 \oplus a_1), ..., (a_0 \oplus a_1 \oplus ... \oplus a_{n-2})]$$

- Example: if \oplus is addition, then scan on the set
 - $[3 \ 1 \ 7 \ 0 \ 4 \ 1 \ 6 \ 3]$
 - returns the set
 - $[0 \ 3 \ 4 \ 11 \ 11 \ 15 \ 16 \ 22]$
Segmented Scan

- Example: if \oplus is addition, then scan on the set
 - $\begin{bmatrix} 3 & 1 & 7 | 0 & 4 & 1 | 6 & 3 \end{bmatrix}$
 - returns the set
 - $\begin{bmatrix} 0 & 3 & 4 | 0 & 0 & 4 | 0 & 6 \end{bmatrix}$
- Same computational complexity as scan, but additionally have to keep track of segments (we use head flags to mark which elements are segment heads)
- Useful for *nested data parallelism* (quicksort)
Quicksort

[5 3 7 4 6] # initial input
[5 5 5 5 5] # distribute pivot across segment
[f f t f t] # input > pivot?
[5 3 4][7 6] # split-and-segment
[5 5 5][7 7] # distribute pivot across segment
[t f f][t f] # input >= pivot?
[3 4 5][6 7] # split-and-segment, done!
$O(n \log n)$ Scan

- Step efficient ($\log n$ steps)
- Not work efficient ($n \log n$ work)
O(n) Scan

- **Not step efficient** (2 log n steps)
- **Work efficient** (O(n) work)
Informally, stream compaction is a filtering operation: from an input vector, it selects a subset of this vector and packs that subset into a dense output vector. Figure 39-9 shows an example. More formally, stream compaction takes an input vector v_i and a predicate p, and outputs only those elements in v_i for which $p(v_i)$ is true, preserving the ordering of the input elements. Horn (2005) describes this operation in detail.

Stream compaction requires two steps, a scan and a scatter.

1. The first step generates a temporary vector where the elements that pass the predicate are set to 1 and the other elements are set to 0. We then scan this temporary vector. For each element that passes the predicate, the result of the scan now contains the destination address for that element in the output vector.

2. The second step scatters the input elements to the output vector using the addresses generated by the scan.

Figure 39-10 shows this process in detail.

- 1M elements: ~0.6-1.3 ms
- 16M elements: ~8-20 ms
- Perf depends on # elements retained
Application: Radix Sort

- Sort 16M 32-bit key-value pairs: ~120 ms
- Perform split operation on each bit using scan
- Can also sort each block and merge
 - Efficient merge on GPU an active area of research

<table>
<thead>
<tr>
<th>100</th>
<th>111</th>
<th>010</th>
<th>110</th>
<th>011</th>
<th>101</th>
<th>001</th>
<th>000</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Input
- Split based on least significant bit b
- e = Set a “1” in each “0” input
- f = Scan the 1s
- totalFalse = e[\text{max}] + f[\text{max}]

$t = i - f + \text{totalFalse}$
$d = b \ ? t : f$

Scatter input using d as scatter address
GPU Design Principles

• Data layouts that:
 • Minimize memory traffic
 • Maximize coalesced memory access

• Algorithms that:
 • Exhibit data parallelism
 • Keep the hardware busy
 • Minimize divergence
Dense Matrix Multiplication

- for all elements E in destination matrix P
 - $P_{r,c} = M_r \cdot N_c$
Dense Matrix Multiplication

- $P = M \times N$ of size $\text{WIDTH} \times \text{WIDTH}$

- With blocking:
 - One thread block handles one $\text{BLOCK_SIZE} \times \text{BLOCK_SIZE}$ sub-matrix P_{sub} of P
 - M and N are only loaded $\text{WIDTH} / \text{BLOCK_SIZE}$ times from global memory
 - Great saving of memory bandwidth!
Dense Matrix Multiplication

- Data layouts that:
 - Minimize memory traffic
 - Maximize coalesced memory access

- Algorithms that:
 - Exhibit data parallelism
 - Keep the hardware busy
 - Minimize divergence
Sparse Matrix-Vector Multiply: What’s Hard?

- Dense approach is wasteful
- Unclear how to map work to parallel processors
- Irregular data access
Sparse Matrix Formats

(DIA) Diagonal
(ELL) ELLPACK
(CSR) Compressed Row
(HYB) Hybrid
(COO) Coordinate

Structured Unstructured
Diagonal Matrices

- Diagonals should be mostly populated
- Map one thread per row
 - Good parallel efficiency
 - Good memory behavior [column-major storage]
Irregular Matrices: ELL

- Assign one thread per row again
- But now:
 - Load imbalance hurts parallel efficiency
Irregular Matrices: COO

- General format; insensitive to sparsity pattern, but ~3x slower than ELL
- Assign one thread per element, combine results from all elements in a row to get output element
- Req segmented reduction, communication btwn threads

no padding!
Thread-per-\{element, row\}
Irregular Matrices: HYB

- Combine regularity of ELL + flexibility of COO
SpMV: Summary

- Ample parallelism for large matrices
 - Structured matrices (dense, diagonal): straightforward
- Take-home message: Use data structure appropriate to your matrix
- Sparse matrices: Issue: Parallel efficiency
 - ELL format / one thread per row is efficient
- Sparse matrices: Issue: Load imbalance
 - COO format / one thread per element is insensitive to matrix structure
- Conclusion: Hybrid structure gives best of both worlds
 - Insight: Irregularity is manageable if you regularize the common case
Composition

Fragment Generation

- Fragments (position, depth, color)
- Subpixels (position, color)

Composite

Filter

Final pixels

Samples / Fragments

Subpixels locations

Pixel

S1

S2

S3

S4
Pixel-Parallel Composition

Subpixel 0

Subpixel 1

Subpixel 0

Subpixel 1

Pixel i

Pixel i+1
Sample-Parallel Composition

Subpixel 0 Subpixel 1 Subpixel 0 Subpixel 1

Segmented Scan

Segmented Reduction

Pixel i Pixel i+1
Hash Tables & Sparsity

- Lefebvre and Hoppe, Siggraph 2006
Scalar Hashing

Linear Probing

Double Probing

Chaining
Scalar Hashing: Parallel Problems

- Construction and Lookup
 - Variable time/work per entry

- Construction
 - Synchronization / shared access to data structure
Parallel Hashing: The Problem

- Hash tables are good for sparse data.
- Input: Set of key-value pairs to place in the hash table
- Output: Data structure that allows:
 - Determining if key has been placed in hash table
 - Given the key, fetching its value
- Could also:
 - Sort key-value pairs by key (construction)
 - Binary-search sorted list (lookup)
- Recalculate at every change
Parallel Hashing: What We Want

- Fast construction time
- Fast access time
 - $O(1)$ for any element, $O(n)$ for n elements in parallel
- Reasonable memory usage
- Algorithms and data structures may sit at different places in this space
- Perfect spatial hashing has good lookup times and reasonable memory usage but is very slow to construct
Level 1: Distribute into buckets

Keys

Bucket sizes

Local offsets

Global offsets

Data distributed into buckets

Atomic add

Bucket ids
Parallel Hashing: Level 1

- Good for a coarse categorization
 - Possible performance issue: atomics
- Bad for a fine categorization
 - Space requirements for n elements to (probabilistically) guarantee no collisions are $O(n^2)$
Hashing in Parallel

h_a h_b

1 0 1 0
3 1 3 1
2 2 2 2
0 3 1 3
Cuckoo Hashing Construction

- Lookup procedure: in parallel, for each element:
 - Calculate h_1 & look in T_1;
 - Calculate h_2 & look in T_2; still $O(1)$ lookup
Cuckoo Construction Mechanics

- Level 1 created buckets of no more than 512 items
 - Average: 409; probability of overflow: $< 10^{-6}$
- Level 2: Assign each bucket to a thread block, construct cuckoo hash per bucket entirely within shared memory
 - Semantic: Multiple writes to same location must have one and only one winner
- Our implementation uses 3 tables of 192 elements each (load factor: 71%)
- What if it fails? New hash functions & start over.
Timings on random voxel data

- GPU Hash: Construction
- GPU Hash: Retrieval
- Sorted array: Radix sort
- Sorted array: Binary search
- CPU PSH: Retrieval

Milliseconds vs. Key-value pairs (millions)
Hashing: Big Ideas

- Classic serial hashing techniques are a poor fit for a GPU.
 - Serialization, load balance
- Solving this problem required a different algorithm
 - Both hashing algorithms were new to the parallel literature
 - Hybrid algorithm was entirely new
Trees: Motivation

- Query: Does object X intersect with anything in the scene?

- Difficulty: X and the scene are dynamic

- Goal: Data structure that makes this query efficient (in parallel)

Images from *HPCCD: Hybrid Parallel Continuous Collision Detection*, Kim et al., Pacific Graphics 2009
k-d trees

Images from Wikipedia, “Kd-tree”
Generating Trees

- Increased parallelism with depth
- Irregular work generation
Tree Construction on a GPU

- At each stage, any node can generate 0, 1, or 2 new nodes
- Increased parallelism, but some threads wasted
- Compact after each step?
Tree Construction on a GPU

- Compact reduces overwork, but ...
- ... requires global compact operation per step
- Also requires worst-case storage allocation
Assumptions of Approach

- Fairly high computation cost per step
 - Smaller cost -> runtime dominated by overhead
- Small branching factor
 - Makes pre-allocation tractable
- Fairly uniform computation per step
 - Otherwise, load imbalance
- No communication between threads at all
Work Queue Approach

- Allocate private work queue of tasks per core
 - Each core can add to or remove work from its local queue
- Cores mark self as idle if {queue exhausts storage, queue is empty}
- Cores periodically check global idle counter
- If global idle counter reaches threshold, rebalance work

Fast Hierarchy Operations on GPU Architectures, Lauterbach et al.
Blocking Dynamic Task Queue

Queue

- Poor performance
- Scales poorly with # of blocks
Non-Blocking Dynamic Task Queue

- Atomic Head Ptr
- Queue
- Atomic Tail Ptr

- Lazy update of pointers
- Better performance
- Scales well with small # of blocks, but poorer with large
• Best performance and scalability
• Recent work by our group explored *task donating*
• Win for memory consumption overall
Big-Picture Questions

- Relative cost of computation vs. overhead
- Frequency of global communication
- Cost of global communication
- Need for communication between GPU cores?
 - Would permit efficient in-kernel work stealing
DS Research Challenges

- String-based algorithms
- Building suffix trees (DNA sequence alignment)
- Graphs (vs. sparse matrix) and trees
- Dynamic programming
- Neighbor queries (kNN)
- Tuning
- True “parallel” data structures (not parallel versions of serial ones)?
- Incremental data structures
Thanks to …

- Nathan Bell, Michael Garland, David Luebke, Shubho Sengupta, and Dan Alcantara for helpful comments and slide material.

- Funding agencies: Department of Energy (SciDAC Institute for Ultrascale Visualization, Early Career Principal Investigator Award), NSF, BMW, NVIDIA, HP, Intel, UC MICRO, Rambus
Bibliography

