
1Winter 2011 – Beyond Programmable Shading

GPU architecture II:
Scheduling the graphics pipeline

Mike Houston, AMD / Stanford

Aaron Lefohn, Intel / University of Washington

2Winter 2011 – Beyond Programmable Shading

Notes

• The front half of this talk is almost verbatim from:

“Keeping Many Cores Busy: Scheduling the Graphics Pipeline”
by Jonathan Ragan-Kelley from SIGGRAPH Beyond
Programmable Shading, 2010

• I’ll be adding my own twists from my background on working
on some of the hardware in the talk

3Winter 2011 – Beyond Programmable Shading

This talk

• How to think about scheduling GPU-style pipelines
Four constraints which drive scheduling decisions

• Examples of these concepts in real GPU designs

• Goals

– Know why GPUs, APIs impose the constraints they do.

– Develop intuition for what they can do well.

– Understand key patterns for building your own pipelines.

• Dig into ATI Radeon™ HD 5800 Series (“Cypress”)
architecture deep dive

– What questions do you have?

4Winter 2011 – Beyond Programmable Shading

Scheduling [n.]:

Assigning computations and data to
resources in space and time.

First, a definition

5Winter 2011 – Beyond Programmable Shading

The workload: Direct3D

IA

VS

PA

HS

Tess

Fixed-function stage

Programmable stage

Logical pipeline

DS

PA

GS

Rast

PS

Blend

d
a
ta

 f
lo

w

6Winter 2011 – Beyond Programmable Shading

The machine: a modern GPU

Shader

Core

Shader

Core

Shader

Core

Shader

Core

Shader

Core

Shader

Core

Shader

Core

Shader

Core

Tex

Tex

Tex

Tex

Input

Assembler

Task Distributor

Primitive

Assembler
Fixed-function stage

Programmable stage

Logical pipeline

Fixed-function logic

Programmable core

Physical processor

Fixed-function control

Rasterizer
Output

Blend

7Winter 2011 – Beyond Programmable Shading

Blend

Blend

Blend

PSPS
PS

Rast

PA

VS

Scheduling a draw call as a series of
tasks

Shader

Core

Shader

Core

Shader

Core

Shader

Core

tim
e

Input

Assembler

Primitive

Assembler
Rasterizer

Output

Blend

IA

8Winter 2011 – Beyond Programmable Shading

Blend

BlendPS

PS

RastPA

An efficient schedule keeps
hardware busy

Shader

Core

Shader

Core

Shader

Core

tim
e

Input

Assembler

Primitive

Assembler
Rasterizer

Output

Blend

IA

PS

VS

Shader

Core

PS

VS

Rast

PAIA

PS

VS

PS

PS

VS PAIA

PA

IA

PA

IA

PAIA

Rast Blend

Blend

Blend

Rast

Rast

Rast

PS

VS

PS

PS

VS

PS

PS

VS

PS

PS

PS

VS

9Winter 2011 – Beyond Programmable Shading

Choosing which tasks to run when
(and where)

• Resource constraints

– Tasks can only execute when there are sufficient resources for their
computation and their data.

• Coherence

– Control coherence is essential to shader core efficiency.

– Data coherence is essential to memory and communication efficiency.

• Load balance

– Irregularity in execution time create bubbles in the pipeline schedule.

• Ordering

– Graphics APIs define strict ordering semantics, which restrict possible
schedules.

10Winter 2011 – Beyond Programmable Shading

PSPS

Resource constraints limit
scheduling options

Shader

Core

Shader

Core

Shader

Core

tim
e

Input

Assembler

Primitive

Assembler
Rasterizer

Output

Blend

VS

Shader

Core

PS
PS

IA

???

11Winter 2011 – Beyond Programmable Shading

PSPS

Resource constraints limit
scheduling options

Shader

Core

Shader

Core

Shader

Core

tim
e

Input

Assembler

Primitive

Assembler
Rasterizer

Output

Blend

VS

Shader

Core

PS

Key

concept:

Pre-allocation of

resources helps

guarantee forward

progress.

PS

IA

??? ???Deadlock

12Winter 2011 – Beyond Programmable Shading

Coherence is a balancing act

Intrinsic tension between:

Horizontal (control, fetch) coherence and
Vertical (producer-consumer) locality.

Locality and Load Balance.

13Winter 2011 – Beyond Programmable Shading

Graphics workloads are irregular

Rasterizer

But: Shaders are optimized for regular, self-similar work.

Imbalanced work creates bubbles in the task schedule.

Solution:

Dynamically generating and aggregating tasks isolates
irregularity and recaptures coherence.

Redistributing tasks restores load balance.

…!

SuperExpensiveShader()
TrivialShader()

14Winter 2011 – Beyond Programmable Shading

Blend

Blend

Blend

PS
PS

PA

Redistribution after irregular
amplification

Shader

Core

Shader

Core

Shader

Core

tim
e

Input

Assembler

Primitive

Assembler
Rasterizer

Output

Blend

IA

PS

VS

Shader

Core

Rast

15Winter 2011 – Beyond Programmable Shading

Blend

Blend

Blend

PS
PS

Redistribution after irregular
amplification

Shader

Core

Shader

Core

Shader

Core

tim
e

Input

Assembler

Primitive

Assembler
Rasterizer

Output

Blend

IA

PS

Shader

Core

Rast

PA

VS

Key

concept:

Managing irregularity by dynamically

generating, aggregating, and redistributing

tasks

16Winter 2011 – Beyond Programmable Shading

Ordering

Rule:

All framebuffer updates must appear as though all triangles
were drawn in strict sequential order

Key

concept:

Carefully structuring task

redistribution to maintain API

ordering.

17Winter 2011 – Beyond Programmable Shading

Building a real pipeline

18Winter 2011 – Beyond Programmable Shading

Static tile scheduling

Vertex Pixel Pixel Pixel Pixel

Multiple
cores:
1 front-end
n back-end

Exemplar:

ARM Mali 400

The simplest thing that could
possibly work.

19Winter 2011 – Beyond Programmable Shading

Static tile scheduling

Vertex

Pixel

Pixel

Pixel

Pixel

Exemplar:

ARM Mali 400

20Winter 2011 – Beyond Programmable Shading

Static tile scheduling

Vertex

Pixel

Pixel

Pixel

Pixel

Exemplar:

ARM Mali 400

21Winter 2011 – Beyond Programmable Shading

Static tile scheduling

Vertex

Pixel

Pixel

Pixel

Pixel

Exemplar:

ARM Mali 400

22Winter 2011 – Beyond Programmable Shading

Static tile scheduling

Pixel

Pixel

Pixel

Pixel

Locality
captured within
tiles

Resource
constraints
static = simple

Ordering
single front-end,
sequential
processing within
each tile

Exemplar:

ARM Mali 400

23Winter 2011 – Beyond Programmable Shading

Static tile scheduling

Pixel

Pixel

Pixel

Pixel

idle…

idle…

idle…

!!!

The problem:
load imbalance

only one task
creation point.

no dynamic task
redistribution.

Exemplar:

ARM Mali 400

24Winter 2011 – Beyond Programmable Shading

Sort-last fragment shading

Vertex

Pixel

Pixel

Pixel

Pixel

Exemplars:

NVIDIA G80, ATI RV770

Rasterizer

Redistribution
restores fragment
load balance.

But how can we
maintain order?

25Winter 2011 – Beyond Programmable Shading

Sort-last fragment shading

Vertex

Pixel

Pixel

Pixel

Pixel

Rasterizer

Preallocate
outputs in
FIFO order

Exemplars:

NVIDIA G80, ATI RV770

26Winter 2011 – Beyond Programmable Shading

Sort-last fragment shading

Vertex

Pixel

Pixel

Pixel

Pixel

Rasterizer

Complete
shading
asynchronously

Exemplars:

NVIDIA G80, ATI RV770

27Winter 2011 – Beyond Programmable Shading

Sort-last fragment shading

Vertex

Pixel

Pixel

Pixel

Pixel

Rasterizer
Output

Blend

Blend
fragments in
FIFO order

Exemplars:

NVIDIA G80, ATI RV770

28Winter 2011 – Beyond Programmable Shading

Unified shaders

Shader

Core

Shader

Core

Shader

Core

Shader

Core

Shader

Core

Shader

Core

Shader

Core

Shader

Core

Tex

Tex

Tex

Tex

Input

Assembler

Task Distributor

Primitive

Assembler

Rasterizer
Output

Blend

Solve load balance by time-multiplexing
different stages onto shared processors
according to load

Exemplars:

NVIDIA G80, ATI RV770

29Winter 2011 – Beyond Programmable Shading

Blend

Blend

Blend

PS
PS

Rast

PA

Unified Shaders: time-multiplexing cores

Shader

Core

Shader

Core

Shader

Core

tim
e

Input

Assembler

Primitive

Assembler
Rasterizer

Output

Blend

IA

PS

VS

Shader

Core

Exemplars:

NVIDIA G80, ATI RV770

30Winter 2011 – Beyond Programmable Shading

Prioritizing the logical pipeline

IA

VS

PA

Rast

PS

Blend

5

4

3

2

1

0

p
rio

rity

31Winter 2011 – Beyond Programmable Shading

Prioritizing the logical pipeline

IA

VS

PA

Rast

PS

Blend

5

4

3

2

1

0

fixed-size
queue
storage

p
rio

rity

32Winter 2011 – Beyond Programmable Shading

Scheduling the pipeline

Shader

Core

Shader

Core

IA

VS

PA

Rast

PS

Blend

ti
m

e

33Winter 2011 – Beyond Programmable Shading

Scheduling the pipeline

Shader

Core

Shader

Core

IA

VS

PA

Rast

PS

Blend

VS VS

ti
m

e

34Winter 2011 – Beyond Programmable Shading

Scheduling the pipeline

Shader

Core

Shader

Core

IA

VS

PA

Rast

PS

Blend

VSVS

ti
m

e

35Winter 2011 – Beyond Programmable Shading

PSPS

Scheduling the pipeline

Shader

Core

Shader

Core

IA

VS

PA

Rast

PS

Blend

VSVS

ti
m

e
High priority,
but stalled on
output

Lower
priority, but
ready to run

36Winter 2011 – Beyond Programmable Shading

PSPS

Scheduling the pipeline

Shader

Core

Shader

Core

IA

VS

PA

Rast

PS

Blend

VSVS

ti
m

e

…

37Winter 2011 – Beyond Programmable Shading

Scheduling the pipeline

Queue sizes and backpressure provide
a natural knob for balancing
horizontal batch coherence and
producer-consumer locality.

38Winter 2011 – Beyond Programmable Shading

OptiX

39Winter 2011 – Beyond Programmable Shading

Summary

40Winter 2011 – Beyond Programmable Shading

Key concepts

• Think of scheduling the pipeline as mapping tasks onto cores.

• Preallocate resources before launching a task.

– Preallocation helps ensure forward progress and prevent deadlock.

• Graphics is irregular.

– Dynamically generating, aggregating and redistributing tasks at irregular
amplification points regains coherence and load balance.

• Order matters.

– Carefully structure task redistribution to maintain ordering.

41Winter 2011 – Beyond Programmable Shading

Static preallocation of resources guarantees forward progress.

Tasks which outgrow available resources can stall, causing
deadlock.

Why don’t we have dynamic resource

allocation?

e.g. recursion, malloc() in shaders

42Winter 2011 – Beyond Programmable Shading

Geometry Shaders are slow because they allow
dynamic amplification in shaders.

•Pick your poison:

– Always stream through DRAM.

–Exemplar: ATI R600

–Smooth falloff for large amplification, but very
slow for small amplification (DRAM latency).

– Scale down parallelism to fit.

–exemplar: NVIDIA G80

–Fast for small amplification, poor shader
throughput (no parallelism) for large
amplification.

43Winter 2011 – Beyond Programmable Shading

Why isn’t rasterization
programmable?

Yes, partly because it is computationally
intensive, but also:

It is highly irregular.

It must generate and aggregate regular
output.

It must integrate with an order-
preserving task redistribution mechanism.

44Winter 2011 – Beyond Programmable Shading

Questions for the future

Can we relax the strict ordering requirements?

Can you build a generic scheduler for
application-defined pipelines?

What application-specific information would a
generic scheduler need to work well?

45Winter 2011 – Beyond Programmable Shading

Starting points to learn more

The next step: parallel primitive processing

–Eldridge et al. Pomegranate: A Fully Scalable Graphics
Architecture. SIGGRAPH 2000.

–Tim Purcell. Fast Tessellated Rendering on Fermi GF100.
Hot3D, HPG 2010.

Scheduling cyclic graphs, in software, on current
GPUs

–Parker et al. OptiX: A General Purpose Ray Tracing Engine.
SIGGRAPH 2010.

Details of the ARM Mali design

–Tom Olson. Mali-400 MP: A Scalable GPU for Mobile Devices.
Hot3D, HPG 2010.

46Winter 2011 – Beyond Programmable Shading

“Cypress” Deep Dive

47Winter 2011 – Beyond Programmable Shading

ATI Radeon™ HD 5870 GPU Features
20 SIMD engines (MPMD)

– Each with 16 Stream Cores (SC)

– Each SC with 5 Processing Elements (PE)
(1600 Total)

– Each PE IEEE 754 –2008 precision capable

– denorm support, fma, flags, round modes

– Fast integer support

– Each with local data share memory

– 32 kb shared low latency memory

– 32 banks with hardware conflict
management

– 32 integer atomic units

80 Read Address Probes

– 4 addresses per SIMD engine (32 -128 bits
data)

– 4 filter or convert logic per SIMD

Global Memory access

– 32 SC access read/write/integer atomic/clock

– Relaxed Unordered Memory Consistency
Model

– On chip 64 kb global data share

153 GB/sec GDDR5 memory interface

ATI
Radeon™

HD 4870

ATI Radeon™

HD 5870
Difference

Area 263 mm
2

334 mm
2

1.27x

Transistors 956 million 2.15 billion 2.25x

Memory
Bandwidth

115 GB/sec 153 GB/sec 1.33x

L2-L1 Rd
Bandwidth

512
bytes/clk

512
bytes/clk

1x

L1 Bandwidth
640

bytes/clk
1280
bytes/clk

2x

Vector GPR 2.62 Mbytes 5.24 MByte 2x

LDS Memory 160 kb 640kb 4x

LDS Bandwidth 640 byte/clk
2560
bytes/clk

4x

Concurrent
Threads

15872 31744 2x

Shader (ALU
units)

800 1600 2x

Board Power*

Idle 90 W 27 W 0.3x

Max 160 W 188 W 1.17x

48Winter 2011 – Beyond Programmable Shading

49Winter 2011 – Beyond Programmable Shading

Compute Aspects of Radeon™ HD 5870

• Stream Cores

• Local Data Share (LDS)

• SIMD Engine

• Load / Store / Atomic Data Access

• Dispatch / Indirect Dispatch

• Global Data Share (GDS)

50Winter 2011 – Beyond Programmable Shading

Stream Core with Processing Elements (PE)

Each Stream Core Unit
includes:

• 4 PE

• 4 Independent SP or Integer
Ops

• 2 DP add or dependant SP
pairs

• 1 DP fma or mult or SP dp4

• 1 Special Function PE

• 1 SP or Integer Operation

• SP or DP Transcendental Ops

• Operand Prep logic

• General Purpose Registers

• Data forwarding and predication
logic

51Winter 2011 – Beyond Programmable Shading

Processing Element (PE) Precision Improvements

– FMA (Fused Multiply Add), IEEE 754-2008 precise with all round modes, proper

handling of Nan/Inf/Zero and full de-normal support in hardware for SP and DP

– MULADD instruction without truncation, enabling a MULieee followed ADDieee to

be combined with round and normalization after both multiplication and
subsequent addition.

– IEEE Rounding Modes (Round to nearest even, Round toward +Infinity,

Round toward –Infinity, Round toward zero) supported under program control

anywhere in the shader. Double and single precision modes are controlled
separately. Applies to all slots in a VLIW.

– De-normal Programmable Mode control for SP and DP independently.

Separate control for input flush to zero and underflow flush to zero.

– FP Conversion Ops between 16 bit, 32 bit, and 64 bit floats with full IEEE

754 precision.

– Exceptions Detection in hardware for floating point numbers with software

recording and reporting mechanism. Inexact, Underflow, Overflow, division by
zero, de-normal, invalid operation

– 64 bit Transcendental Approximation Hardware based double precision

approximation for reciprocal, reciprocal square root and square root

52Winter 2011 – Beyond Programmable Shading

Processing Element (PE) Improved IPC

– Co-issue of dependant Ops in “ONE VLIW” instruction

– full IEEE intermediate rounding & normalization

– Dot4 (A=A*B + C*D + E*F + G*H),

– Dual Dot2 (A= A*B + C*D; F = G*h + I*J)

– Dual Dependant Multiplies (A = A * B * C ; F = G * H * I;)

– Dual Dependant Adds (A = B + C + D; E = F + G + H;)

– Dependant Muladd (A= A*B+C + D*E; F = G*H + I + J*K)

– 24 bit integer

– MUL, MULADD (4 – co-issue)

– Heavy use for Integer thread group address calculation

53Winter 2011 – Beyond Programmable Shading

Processing Element (PE) New Integer Ops

• 32b operand Count Bits Set

• 64b operand Count Bits Set

• Insert Bit field

• Extract Bit Field

• Find first Bit (high, low, signed high)

• Reverse bits

• Extended Integer Math

• Integer Add with carry

• Integer Subtract with borrow

• 1 bit pre-fix sum on 64b mask. (useful for compaction)

• Shader Accessible 64 bit counter

• Uniform indexing of constants

54Winter 2011 – Beyond Programmable Shading

Processing Element (PE) Special Ops

– Conversion Ops

– FP32 to FP64 and FP64 to FP32 (w/IEEE conversion rules)

– FP32 to FP16 and FP 16 to FP32 (w/IEEE conversion rules)

– FP32 to Int/UInt and Uint/Int to FP32

– Very Fast 8 bit Sum of Absolute Differences (SAD)

– 4x1 SAD per lane, with 4x4 8 bit SAD in one VLIW

– Used for video encoding, computer vision

– Exposed via OpenCL extension

– Video Ops

– 8 bit packed to float and float to 8 bit packed conversion Ops

– 4 8 bit pixel average (bilinear interpolation with programmable round)

– Arbitrary Byte or Bit extraction from 64 bits

55Winter 2011 – Beyond Programmable Shading

Local Data Share (LDS)

• High Bandwidth access per SIMD Engine – Peak is double external R/W bandwidth

• Full coalesce R/W/Atomic with optimization for broadcast reads access

• Low Latency Access per SIMD Engine

• 0 latency direct reads (Conflict free or Broadcast)

• 1 VLIW instruction latency for LDS indirect Op

• All bank conflicts are hardware detected and serialized as necessary with fast support for
broadcast reads

• Hardware allocation of LDS space per thread group dispatch

• Base and size stored with wavefront for private access

• Hardware range check - Out of bound access attempts will return 0 and kill writes

• 32 – byte, ubyte, short, ushort reads/writes per clk (reads are sign extended)

• 32 dwords access per clock

• Per lane 32 bit Read, Read2, Write, Write2

• Per lane 32 bit Atomic: add, sub, rsub, inc, dec, min, max, and, or, xor, mskor,
exchange, exchange2, compare _swap(int), compare_swap(float w/Nan/Inf)

• Return pre-Op value to Stream Core 4 primary Processing Elements

Share Data between Work Items of a Work Group to increase
performance

56Winter 2011 – Beyond Programmable Shading

Local Data Share (LDS)

57Winter 2011 – Beyond Programmable Shading

SIMD Engine

• SIMD Engine can process Wavefronts from multiple kernels concurrently

• Masking and/or Branching is used to enable thread divergence within a Wavefront

– Enabling each Thread in a Wavefront to traverse a unique program execution path

• Full hardware barrier support for up to 8 Work Groups per SIMD Engine (for thread data
sharing)

• Each Stream Core receives up to the following per VLIW instruction issue

– 5 unique ALU Ops - or - 4 unique ALU Ops with a LDS Op (Up to 3 operands per thread)

• LDS and Global Memory access for byte, ubyte, short, ushort reads/writes supported at 32bit
dword rates

• Private Loads and read only texture reads via Read Cache

• Unordered shared consistent loads/stores/atomics via R/W Cache

• Wavefront length of 64 threads where each thread executes a 5 way VLIW Instruction each
issue

– ¼ Wavelength (16 threads) on each clock of 4 clocks (T0-15, T16-31, T32-47, T48-T63)

58Winter 2011 – Beyond Programmable Shading

