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Notes

• The front half of this talk is almost verbatim from:

“Keeping Many Cores Busy: Scheduling the Graphics Pipeline”
by Jonathan Ragan-Kelley from SIGGRAPH Beyond 
Programmable Shading, 2010

• I’ll be adding my own twists from my background on working 
on some of the hardware in the talk
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This talk

• How to think about scheduling GPU-style pipelines
Four constraints which drive scheduling decisions

• Examples of these concepts in real GPU designs

• Goals

– Know why GPUs, APIs impose the constraints they do.

– Develop intuition for what they can do well.

– Understand key patterns for building your own pipelines.

• Dig into ATI Radeon™ HD 5800 Series (“Cypress”) 
architecture deep dive

– What questions do you have?
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Scheduling [n.]:

Assigning computations and data to 
resources in space and time.

First, a definition
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The workload: Direct3D

IA

VS

PA

HS

Tess

Fixed-function stage

Programmable stage

Logical pipeline

DS

PA

GS

Rast

PS

Blend

d
a
ta

 f
lo

w



6Winter 2011 – Beyond Programmable Shading

The machine: a modern GPU
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Choosing which tasks to run when 
(and where)

• Resource constraints

– Tasks can only execute when there are sufficient resources for their 
computation and their data.

• Coherence

– Control coherence is essential to shader core efficiency.

– Data coherence is essential to memory and communication efficiency.

• Load balance

– Irregularity in execution time create bubbles in the pipeline schedule.

• Ordering

– Graphics APIs define strict ordering semantics, which restrict possible 
schedules.
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PSPS

Resource constraints limit 
scheduling options
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Coherence is a balancing act

Intrinsic tension between:

Horizontal (control, fetch) coherence and
Vertical (producer-consumer) locality.

Locality and Load Balance.
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Graphics workloads are irregular

Rasterizer

But: Shaders are optimized for regular, self-similar work.

Imbalanced work creates bubbles in the task schedule.

Solution:

Dynamically generating and aggregating tasks isolates 
irregularity and recaptures coherence.

Redistributing tasks restores load balance.

…!

SuperExpensiveShader( )
TrivialShader( )
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Blend

Blend

Blend

PS
PS

Redistribution after irregular 
amplification

Shader

Core

Shader

Core

Shader

Core

tim
e

Input 

Assembler

Primitive 

Assembler
Rasterizer

Output 

Blend

IA

PS

Shader

Core

Rast

PA

VS

Key 

concept:

Managing irregularity by dynamically

generating, aggregating, and redistributing 

tasks



16Winter 2011 – Beyond Programmable Shading

Ordering

Rule:

All framebuffer updates must appear as though all triangles 
were drawn in strict sequential order

Key 

concept:

Carefully structuring task 

redistribution to maintain API 

ordering.
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Building a real pipeline
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Static tile scheduling

Vertex Pixel Pixel Pixel Pixel

Multiple 
cores:
1 front-end
n back-end

Exemplar:

ARM Mali 400

The simplest thing that could
possibly work.
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Static tile scheduling
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Static tile scheduling
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Static tile scheduling
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Static tile scheduling
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Static tile scheduling
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Sort-last fragment shading
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But how can we 
maintain order?
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Sort-last fragment shading

Vertex

Pixel

Pixel

Pixel

Pixel

Rasterizer

Preallocate
outputs in 
FIFO order

Exemplars:

NVIDIA G80, ATI RV770



26Winter 2011 – Beyond Programmable Shading

Sort-last fragment shading
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Sort-last fragment shading
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Unified shaders

Shader

Core

Shader

Core

Shader

Core

Shader

Core

Shader

Core

Shader

Core

Shader

Core

Shader

Core

Tex

Tex

Tex

Tex

Input 

Assembler

Task Distributor

Primitive 

Assembler

Rasterizer
Output 

Blend

Solve load balance by time-multiplexing 
different stages onto shared processors 
according to load

Exemplars:

NVIDIA G80, ATI RV770



29Winter 2011 – Beyond Programmable Shading

Blend

Blend

Blend

PS
PS

Rast

PA

Unified Shaders: time-multiplexing cores

Shader

Core

Shader

Core

Shader

Core

tim
e

Input 

Assembler

Primitive 

Assembler
Rasterizer

Output 

Blend

IA

PS

VS

Shader

Core

Exemplars:

NVIDIA G80, ATI RV770



30Winter 2011 – Beyond Programmable Shading

Prioritizing the logical pipeline
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Prioritizing the logical pipeline
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Scheduling the pipeline 
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Scheduling the pipeline 
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Scheduling the pipeline 
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Scheduling the pipeline

Queue sizes and backpressure provide 
a natural knob for balancing 
horizontal batch coherence and 
producer-consumer locality.
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OptiX
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Summary
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Key concepts

• Think of scheduling the pipeline as mapping tasks onto cores.

• Preallocate resources before launching a task.

– Preallocation helps ensure forward progress and prevent deadlock.

• Graphics is irregular.

– Dynamically generating, aggregating and redistributing tasks at irregular 
amplification points regains coherence and load balance.

• Order matters.

– Carefully structure task redistribution to maintain ordering.
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Static preallocation of resources guarantees forward progress.

Tasks which outgrow available resources can stall, causing 
deadlock.

Why don’t we have dynamic resource 

allocation?

e.g. recursion, malloc() in shaders
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Geometry Shaders are slow because they allow 
dynamic amplification in shaders.

•Pick your poison:

– Always stream through DRAM.

–Exemplar: ATI R600

–Smooth falloff for large amplification, but very 
slow for small amplification (DRAM latency).

– Scale down parallelism to fit.

–exemplar: NVIDIA G80

–Fast for small amplification, poor shader
throughput (no parallelism) for large 
amplification.
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Why isn’t rasterization
programmable?

Yes, partly because it is computationally 
intensive, but also:

It is highly irregular.

It must generate and aggregate regular 
output.

It must integrate with an order-
preserving task redistribution mechanism.
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Questions for the future

Can we relax the strict ordering requirements?

Can you build a generic scheduler for 
application-defined pipelines?

What application-specific information would a 
generic scheduler need to work well?



45Winter 2011 – Beyond Programmable Shading

Starting points to learn more

The next step: parallel primitive processing

–Eldridge et al. Pomegranate: A Fully Scalable Graphics 
Architecture. SIGGRAPH 2000.

–Tim Purcell. Fast Tessellated Rendering on Fermi GF100. 
Hot3D, HPG 2010.

Scheduling cyclic graphs, in software, on current 
GPUs

–Parker et al. OptiX: A General Purpose Ray Tracing Engine. 
SIGGRAPH 2010.

Details of the ARM Mali design

–Tom Olson. Mali-400 MP: A Scalable GPU for Mobile Devices. 
Hot3D, HPG 2010.
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“Cypress” Deep Dive
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ATI Radeon™ HD 5870 GPU Features
20 SIMD engines (MPMD)

– Each with 16 Stream Cores (SC)

– Each SC with 5 Processing Elements (PE) 
(1600 Total)

– Each PE IEEE 754 –2008 precision capable

– denorm support, fma, flags, round modes

– Fast integer support

– Each with local data share memory

– 32 kb shared low latency memory

– 32 banks with hardware conflict 
management

– 32 integer atomic units

80 Read Address Probes

– 4 addresses per SIMD engine (32 -128 bits 
data)

– 4 filter or convert logic per SIMD

Global Memory access

– 32 SC access read/write/integer atomic/clock

– Relaxed Unordered Memory Consistency 
Model

– On chip 64 kb global data share

153 GB/sec GDDR5 memory interface

ATI 
Radeon™

HD 4870

ATI Radeon™

HD 5870
Difference

Area 263 mm
2

334 mm
2

1.27x

Transistors 956 million 2.15 billion 2.25x

Memory 
Bandwidth

115 GB/sec 153 GB/sec 1.33x

L2-L1 Rd 
Bandwidth

512 
bytes/clk

512 
bytes/clk

1x

L1 Bandwidth
640 

bytes/clk
1280 
bytes/clk

2x

Vector GPR 2.62 Mbytes 5.24 MByte 2x

LDS Memory 160 kb 640kb 4x

LDS Bandwidth 640 byte/clk
2560 
bytes/clk

4x

Concurrent 
Threads

15872 31744 2x

Shader (ALU 
units)

800 1600 2x

Board Power*

Idle 90 W 27 W 0.3x

Max 160 W 188 W 1.17x
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Compute Aspects of Radeon™  HD 5870 

• Stream Cores

• Local Data Share (LDS)

• SIMD Engine

• Load / Store / Atomic Data Access

• Dispatch / Indirect Dispatch

• Global Data Share (GDS) 
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Stream Core with Processing Elements (PE)

Each Stream Core Unit 
includes:

• 4 PE 

• 4 Independent SP or Integer 
Ops

• 2 DP add or dependant SP 
pairs

• 1 DP fma or mult or SP dp4

• 1 Special Function PE

• 1 SP or Integer Operation

• SP or DP Transcendental Ops

• Operand Prep logic 

• General Purpose Registers

• Data forwarding and predication 
logic
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Processing Element (PE) Precision Improvements

– FMA (Fused Multiply Add),  IEEE 754-2008 precise with all round modes, proper 

handling of Nan/Inf/Zero and full de-normal support in hardware for SP and DP  

– MULADD instruction without truncation, enabling a MULieee followed ADDieee to 

be combined with round and normalization after both multiplication and 
subsequent addition.

– IEEE Rounding Modes (Round to nearest even, Round toward +Infinity, 

Round toward –Infinity, Round toward zero)  supported under program control 

anywhere in the shader.   Double and single precision modes are controlled 
separately.  Applies to all slots in a VLIW.

– De-normal Programmable Mode control for SP and DP independently.  

Separate control for input flush to zero and underflow flush to zero.   

– FP Conversion Ops between 16 bit, 32 bit, and 64 bit floats with full IEEE 

754 precision.  

– Exceptions Detection in hardware for floating point numbers with software 

recording and reporting mechanism.  Inexact, Underflow, Overflow, division by 
zero, de-normal, invalid operation

– 64 bit Transcendental Approximation Hardware based double precision 

approximation for reciprocal, reciprocal square root and square root 
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Processing Element (PE)  Improved IPC

– Co-issue of dependant Ops in “ONE VLIW” instruction 

– full IEEE intermediate rounding & normalization

– Dot4                                          (A=A*B + C*D + E*F + G*H),

– Dual Dot2                                 ( A= A*B + C*D;         F = G*h + I*J) 

– Dual Dependant Multiplies   (A = A * B * C ;           F = G * H * I;)  

– Dual Dependant Adds            (A = B + C + D;           E = F + G + H;)

– Dependant Muladd (A= A*B+C + D*E;     F = G*H + I + J*K)

– 24 bit integer 

– MUL, MULADD (4 – co-issue) 

– Heavy use for Integer thread group address calculation
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Processing Element (PE) New Integer Ops

• 32b operand Count Bits Set

• 64b operand Count Bits Set

• Insert Bit field 

• Extract Bit Field

• Find first Bit (high, low, signed high) 

• Reverse bits 

• Extended Integer Math

• Integer Add with carry 

• Integer Subtract with borrow 

• 1 bit pre-fix sum on 64b mask.  (useful for compaction)

• Shader Accessible 64 bit counter

• Uniform indexing of constants
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Processing Element (PE) Special Ops

– Conversion Ops

– FP32 to FP64 and FP64 to FP32  (w/IEEE conversion rules)

– FP32 to FP16 and FP 16 to FP32 (w/IEEE conversion rules)

– FP32 to Int/UInt and Uint/Int to FP32

– Very Fast 8 bit Sum of Absolute Differences (SAD)

– 4x1 SAD per lane, with 4x4 8 bit SAD in one VLIW

– Used for video encoding, computer vision

– Exposed via OpenCL extension

– Video Ops

– 8 bit packed to float and float to 8 bit packed conversion Ops

– 4   8 bit pixel average (bilinear interpolation with programmable round)

– Arbitrary Byte or Bit extraction from 64 bits
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Local Data Share (LDS)

• High Bandwidth access per SIMD Engine – Peak is double external R/W bandwidth

• Full coalesce R/W/Atomic with optimization for broadcast reads access 

• Low Latency Access per SIMD Engine

• 0  latency direct reads (Conflict free or Broadcast)

• 1 VLIW instruction latency for LDS indirect Op 

• All bank conflicts are hardware detected and serialized as necessary with fast support for 
broadcast reads

• Hardware allocation of LDS space per thread group dispatch

• Base and size stored with wavefront for private access

• Hardware range check - Out of bound access attempts will return 0 and kill writes

• 32 – byte, ubyte, short, ushort reads/writes per clk (reads are sign extended)

• 32 dwords access per clock 

• Per lane 32 bit Read, Read2, Write, Write2 

• Per lane 32 bit Atomic: add, sub, rsub, inc, dec, min, max, and, or, xor, mskor, 
exchange,  exchange2,  compare _swap(int), compare_swap(float w/Nan/Inf)  

• Return pre-Op value to Stream Core 4 primary Processing Elements

Share Data between Work Items of a Work Group to increase 
performance
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Local Data Share (LDS)
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SIMD Engine

• SIMD Engine can process Wavefronts from multiple kernels concurrently 

• Masking and/or Branching is used to enable thread divergence within a Wavefront

– Enabling each Thread in a Wavefront to traverse a unique program execution path

• Full hardware barrier support for up to 8 Work Groups per SIMD Engine (for thread data 
sharing)

• Each Stream Core receives up to the following per VLIW instruction issue 

– 5 unique ALU Ops  - or - 4  unique ALU Ops with a LDS Op (Up to 3 operands per thread)

• LDS and Global Memory access for byte, ubyte, short, ushort reads/writes supported at 32bit 
dword rates

• Private Loads and read only texture reads via Read Cache

• Unordered shared consistent loads/stores/atomics via R/W Cache     

• Wavefront length of 64 threads where each thread executes a 5 way VLIW Instruction each 
issue

– ¼  Wavelength (16  threads) on each clock of 4 clocks (T0-15, T16-31, T32-47, T48-T63)
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