
1Winter 2011 – Beyond Programmable Shading

Introduction to Parallel Programming
For Real-Time Graphics

(CPU + GPU)
Aaron Lefohn, Intel / University of Washington

Mike Houston, AMD / Stanford

2Winter 2011 – Beyond Programmable Shading

What’s In This Talk?

• Overview of parallel programming models used in real-time
graphics products and research

– Abstraction, execution, synchronization

– Shaders, task systems, conventional threads, graphics pipeline, “GPU” compute
languages

• Parallel programming models

– Vertex shaders

– Conventional thread programming

– Task systems

– Graphics pipeline

– GPU compute languages (ComputeShader, OpenCL, CUDA)

• Discuss

– Strengths/weaknesses of different models

– How each model maps to the architectures

3Winter 2011 – Beyond Programmable Shading

What Goes into a Game
Frame? (2 years ago)

4Winter 2011 – Beyond Programmable Shading

Computation graph for Battlefied: Bad Company provided by DICE

5Winter 2011 – Beyond Programmable Shading

Data Parallelism

6Winter 2011 – Beyond Programmable Shading

Task Parallelism

7Winter 2011 – Beyond Programmable Shading

Graphics Pipelines

Pipeline
Flow

Input Assembly

Vertex Shading

Primitive Setup

Geometry Shading

Rasterization

Pixel Shading

Output Merging

8Winter 2011 – Beyond Programmable Shading

Remember: “Our Enthusiast Chip”

Figure by Kayvon Fatahalian

9Winter 2011 – Beyond Programmable Shading

Hardware Resources (from Kayvon’s Talk)

• Core

• Execution Context

• SIMD functional units

• On-chip memory

Figure by Kayvon Fatahalian

10Winter 2011 – Beyond Programmable Shading

Abstraction

• Abstraction enables portability and system optimization

– E.g., dynamic load balancing, producer-consumer, SIMD utilization

• Lack of abstraction enables arch-specific user optimization

– E.g., multiple execution contexts jointly building on-chip data structure

• Remember:

– When a parallel programming model abstracts a HW resource, code written in that

programming model scales across architectures with varying amounts of that resource

11Winter 2011 – Beyond Programmable Shading

Definitions: Execution

• Task
– A logically related set of instructions executed in a single execution context

(aka shader, instance of a kernel, task)

• Concurrent execution

– Multiple tasks that may execute simultaneously

(because they are logically independent)

• Parallel execution

– Multiple tasks whose execution contexts are guaranteed to be live simultaneously

(because you want them to be for locality, synchronization, etc)

12Winter 2011 – Beyond Programmable Shading

Synchronization

• Synchronization

– Restricting when tasks are permitted to execute

• Granularity of permitted synchronization determines at which
granularity system allows user to control scheduling

13Winter 2011 – Beyond Programmable Shading

Vertex Shaders: “Pure Data Parallelism”

• Execution

– Concurrent execution of identical per-vertex tasks

• What is abstracted?

– Cores, execution contexts, SIMD functional units, memory hierarchy

• What synchronization is allowed?

– Between draw calls

14Winter 2011 – Beyond Programmable Shading

Shader (Data-parallel) Pseudocode

concurrent_for(i = 0 to numVertices - 1)

{

… execute vertex shader …

}

• SPMD = Single Program Multiple Data

– This type of programming is sometimes called SPMD

– Instance the same program multiple times and run on different data

– Many names: shader-style, kernel-style, SPMD

15Winter 2011 – Beyond Programmable Shading

Conventional Thread Parallelism

(e.g., pthreads)

• Execution

– Parallel execution of N tasks with N execution contexts

• What is abstracted?

– Nothing (ignoring preemption)

• Where is synchronization allowed?

– Between any execution context at various granularities

16Winter 2011 – Beyond Programmable Shading

Conventional Thread Parallelism

• Directly program:

– N execution contexts

– N SIMD ALUs / execution context

– …

• To use SIMD ALUs:

__m128 a_line, b_line, r_line;

r_line = _mm_mul_ps(a_line, b_line);

• Powerful, but dangerous...

Figure by Kayvon Fatahalian

17Winter 2011 – Beyond Programmable Shading

Game Workload Example

18Winter 2011 – Beyond Programmable Shading

Typical Game Workload

• Subsystems given % of overall time “budget”

• Input, Miscellaneous: 5%

• Physics: 30%

• AI, Game Logic: 10%

• Graphics: 50%

• Audio: 5%

• GPU Workload:

I AAIPhysics Graphics

“Rendering”

Slide by Tim Foley

19Winter 2011 – Beyond Programmable Shading

• Assign each subsystems to a SW thread

• Problems

– Communication/synchronization

– Load imbalance

– Preemption leads to thrashing

• Don’t do this!

thread 2

thread 3

Parallelism Anti-Pattern #1

I

AI

Physics

Graphics

I

AI

Physics

Graphics

thread 0

thread 1

frame N

Slide by Tim Foley

20Winter 2011 – Beyond Programmable Shading

Parallelism Anti-Pattern #2

• Group subsystems into HW threads

• Problems

– Communication/synchronization

– Load imbalance

– Poor scalability (4, 8, … HW threads)

• Don’t do this either!

I AAIPhysics

Graphics

I AAIPhysics

Graphics

thread 0

thread 1

frame N

Slide by Tim Foley

21Winter 2011 – Beyond Programmable Shading

Better Solution: Find Concurrency…

• Identify where ordering constraints are needed and run
concurrently between constraints

• Visualize as a graph

I AAIP P P P P G G G G G G G G G G

I

A

AI

P

P

P

P

P

G

G

G

G

G

G

G

G

G

G

Slide by Tim Foley

22Winter 2011 – Beyond Programmable Shading

…And Distribute Work to Threads

• Dynamically distribute medium-grained concurrent tasks to
hardware threads

• (Virtualize/abstract the threads”

thread 3

thread 2

thread 1

thread 0 A A A P P GG

AA A A P P G GG

AA PP G GG

P P PP PPP G G G G

Slide by Tim Foley

23Winter 2011 – Beyond Programmable Shading

“Task Systems” (Cilk, TBB, ConcRT, GCD, …)

• Execution

– Concurrent execution of many (likely different) tasks

• What is abstracted?

– Cores and execution contexts

– Does not abstract: SIMD functional units or memory hierarchy

• Where is synchronization allowed?

– Between tasks

24Winter 2011 – Beyond Programmable Shading

Mental Model: Task Systems

• Think of task as asynchronous function call

– “Do F() at some point in the future…”

– Optionally “… after G() is done”

• Can be implemented in HW or SW

– Launching/spawning task is nearly as fast as function call

– Usage model: “Spawn 1000s of tasks and let scheduler
map tasks to execution contexts”

• Usually cooperative, not preemptive

– Task runs to completion – no blocking

– Can create new tasks, but not wait

F()

G()

Slide by Tim Foley

25Winter 2011 – Beyond Programmable Shading

Task Parallel Code (Cilk)

void myTask(…some arguments…)

{

…

}

void main()

{

for(i = 0 to NumTasks - 1)

{

cilk_spawn myTask(…);

}

cilk_sync;

}

26Winter 2011 – Beyond Programmable Shading

Task Parallel Code (Cilk)

void myTask(…some arguments…)

{

…

}

void main()

{

cilk_for(i = 0 to NumTasks - 1)

{

myTask(…);

}

cilk_sync;

}

27Winter 2011 – Beyond Programmable Shading

Nested Task Parallel Code (Cilk)
void barTask(…some parameters…)

{

…

}

void fooTask(…some parameters…)

{

if (someCondition) {
cilk_spawn barTask(…);

}
else {

cilk_spawn fooTask(…);
}

// Implicit cilk_sync at end of function

}

void main()

{

cilk_for(i = 0 to NumTasks - 1) {

fooTask(…);

}

cilk_sync;

… More code …

}

28Winter 2011 – Beyond Programmable Shading

“Task Systems” Review

• Execution

– Concurrent execution of many (likely different)
tasks

• What is abstracted?

– Cores and execution contexts

– Does not abstract: SIMD functional units or
memory hierarchy

• Where is synchronization allowed?

– Between tasks

Figure by Kayvon Fatahalian

29Winter 2011 – Beyond Programmable Shading

DirectX/OpenGL Rendering Pipeline

(Combination of multiple models)

• Execution

– Data-parallel concurrent execution of identical task within each shading
stage

– Task-parallel concurrent execution of different shading stages

– No parallelism exposed to user

• What is abstracted?

– (just about everything)

– Cores, execution contexts, SIMD functional units, memory hierarchy, and
fixed-function graphics units (tessellator, rasterizer, ROPs, etc)

• Where is synchronization allowed?

– Between draw calls

30Winter 2011 – Beyond Programmable Shading

GPU Compute Languages

(Combination of Multiple Models)
• DX11 DirectCompute

• OpenCL

• CUDA

• There are multiple possible usage models. We’ll start with the “text

book” hierarchical data-parallel usage model

31Winter 2011 – Beyond Programmable Shading

GPU Compute Languages

• Execution

– Hierarchical model

– Lower level is parallel execution of identical tasks (work-items) within
work-group

– Upper level is concurrent execution of identical work-groups

• What is abstracted?

– Work-group abstracts a core’s execution contexts, SIMD functional units

– Set of work-groups abstracts cores

– Does not abstract core-local memory

• Where is synchronization allowed?

– Between work-items in a work-group

– Between “passes” (set of work-groups)

32Winter 2011 – Beyond Programmable Shading

GPU Compute Pseudocode

void myWorkGroup()

{

parallel_for(i = 0 to NumWorkItems - 1)

{

… GPU Kernel Code … (This is where you write GPU compute code)

}

}

void main()

{

concurrent_for(i = 0 to NumWorkGroups - 1)

{

myWorkGroup();

}

sync;

}

33Winter 2011 – Beyond Programmable Shading

DX CS/OCL/CUDA Execution Model

• Fundamental unit is work-item

– Single instance of “kernel” program
(i.e., “task” using the definitions in this talk)

– Each work-item executes in single SIMD lane

• Work items collected in work-groups

– Work-group scheduled on single core

– Work-items in a work-group

– Execute in parallel

– Can share R/W on-chip scratchpad memory

– Can wait for other work-items in work-group

• Users launch a grid of work-groups

– Spawn many concurrent work-groups

void f(...) {

int x = ...;

...;

...;

if(...) {

...

}

}

Figure by Tim Foley

34Winter 2011 – Beyond Programmable Shading

GPU Compute Models

…
barrier barrier

Work-group Work-group

Slide by Tim Foley

35Winter 2011 – Beyond Programmable Shading

GPU Compute Use Cases

• 1:1 Mapping

• Simple Fork/Join

• Switching Axes of Parallelism

Increasing
Sophistication

36Winter 2011 – Beyond Programmable Shading

1:1 Mapping

• One work item per ray / per pixel / per matrix element

• Every work item executes the same kernel

• Often first, most obvious solution to a problem

• “Pure data parallelism”

void saxpy(int i,
float a,
const float* x,
const float* y,
float* result)

{
result[i] = a * x[i] + y[i];

}

Slide by Tim Foley

37Winter 2011 – Beyond Programmable Shading

Simple Fork/Join

• Some code must run at work-group granularity

– Example: work items cooperate to compute output structure size

– Atomic operation to allocate output must execute once

• Idiomatic solution

– Barrier, then make work item #0 do the group-wide operation

void subdividePolygon(...)
{

shared int numOutputPolygons = 0;

// in parallel, every work item does
atomic_add(numOutputPolygons, 1);
barrier();

Polygon* output = NULL;
if(workItemID == 0) {

output = allocateMemory(numOutputPolygons);
}
barrier();
...

}

Slide by Tim Foley

38Winter 2011 – Beyond Programmable Shading

Multiple Axes of Parallelism

• Deferred rendering with DX11 Compute Shader

– Example from Johan Andersson (DICE)

– 1000+ dynamic lights

• Multiple phases of execution

– Work group responsible for a screen-space tile

– Each phase exploits work items differently:

– Phase 1: pixel-parallel computation of tile depth bounds

– Phase 2: light-parallel test for intersection with tile

– Phase 3: pixel-parallel accumulation of lighting

• Exploits producer-consumer locality between phases

Slide by Tim Foley

Picture by Johan Andersson

39Winter 2011 – Beyond Programmable Shading

Terminology Decoder Ring

Direct
Compute

CUDA OpenCL
Pthreads+

SSE
This talk

thread thread work-item SIMD lane work-item

- warp - thread
execution
context

threadgroup threadblock Work-group - work-group

-
streaming

multiproces
sor

compute
unit

core core

- grid N-D range -
Set of work-

groups

Slide by Tim Foley

40Winter 2011 – Beyond Programmable Shading

When Use GPU Compute vs Pixel
Shader?

• Use GPU compute language if your algorithm needs on-chip memory

– Reduce bandwidth by building local data structures

• Otherwise, use pixel shader

– All mapping, decomposition, and scheduling decisions automatic

– (Easier to reach peak performance)

41Winter 2011 – Beyond Programmable Shading

GPU Compute Languages Review

• “Write code from within two nested concurrent/parallel loops”

• Abstracts

– Cores, execution contexts, and SIMD ALUs

• Exposes

– Parallel execution contexts on same core

– Fast R/W on-core memory shared by the execution contexts on same core

• Synchronization

– Fine grain: between execution contexts on same core

– Very coarse: between large sets of concurrent work

– No medium-grain synchronization “between function calls” like task
systems provide

42Winter 2011 – Beyond Programmable Shading

Conventional Thread Parallelism on GPUs

• Also called “persistent threads”

• “Expert” usage model for GPU compute

– Defeat abstractions over cores, execution contexts, and SIMD functional units

– Defeat system scheduler, load balancing, etc.

– Code not portable between architectures

43Winter 2011 – Beyond Programmable Shading

• Execution

– Two-level parallel execution model

– Lower level: parallel execution of M identical tasks on M-wide SIMD

functional unit

– Higher level: parallel execution of N different tasks on N execution contexts

• What is abstracted?

– Nothing (other than automatic mapping to SIMD lanes)

• Where is synchronization allowed?

– Lower-level: between any task running on same SIMD functional unit

– Higher-level: between any execution context

Conventional Thread Parallelism on GPUs

44Winter 2011 – Beyond Programmable Shading

Why Persistent Threads?

• Enable alternate programming models that require different
scheduling and synchronization rules than the default model
provides

• Example alternate programming models

– Task systems (esp. nested task parallelism)

– Producer-consumer rendering pipelines

– (See references at end of this slide deck for more details)

45Winter 2011 – Beyond Programmable Shading

Summary of Concepts

• Abstraction

– When a parallel programming model abstracts a HW resource, code written in that

programming model scales across architectures with varying amounts of that resource

• Execution

– Concurrency versus parallelism

• Synchronization

– Where is user allowed to control scheduling?

46Winter 2011 – Beyond Programmable Shading

“Ideal Parallel Programming Model”

• Combine the best of CPU and GPU programming models

– Task systems are great for scheduling (from CPUs)

– “Asynchronous function call” is easy to understand and use

– Great load balancing and scalability (with cores, execution contexts)

– SPMD programming is great for utilizing SIMD (from GPUs)

– “Write sequential code that is instanced N times across N-wide SIMD”

– Intuitive: only slightly different from sequential programming

• Why not just “launch tasks that run fine-grain SPMD code?”

– The future on CPU and GPU?

47Winter 2011 – Beyond Programmable Shading

Conclusions

• Task-, data- and pipeline-parallelism

– Three proven approaches to scalability

– Plentiful of concurrency with little exposed parallelism

– Applicable to many problems in visual computing

• Current real-time rendering programming uses a mix of data-,
task-, and pipeline-parallel programming (and conventional
threads as means to an end)

• Current GPU compute models designed for data-parallelism
but can be abused to implement all of these other models

48Winter 2011 – Beyond Programmable Shading

References

• GPU-inspired compute languages

– DX11 DirectCompute, OpenCL (CPU+GPU+…), CUDA

• Task systems (CPU and CPU+GPU+…)

– Cilk, Thread Building Blocks (TBB), Grand Central Dispatch (GCD), ConcRT, Task Parallel Library, OpenCL (limited in 1.0)

• Conventional CPU thread programming

– Pthreads

• GPU task systems and “persistent threads” (i.e., conventional thread programming on GPU)

– Aila et al, “Understanding the Efficiency of Ray Traversal on GPUs,” High Performance Graphics 2009

– Tzeng et al, “Task Management for Irregular-Parallel Workloads on the GPU,” High Performance Graphics 2010

– Parker et al, “OptiX: A General Purpose Ray Tracing Engine,” SIGGRAPH 2010

• Additional input (concepts, terminology, patterns, etc)

– Foley, “Parallel Programming for Graphics,”

– Beyond Programmable Shading SIGGRAPH 2009

– Beyond Programmable Shading CS448s Stanford course

– Fatahalian, “Running Code at a Teraflop: How a GPU Shader Core Works,” Beyond Programmable Shading SIGGRAPH 2009-
2010

– Keutzer et al, “A Design Pattern Language for Engineering (Parallel) Software: Merging the PLPP and OPL projects, “ ParaPLoP
2010

http://en.wikipedia.org/wiki/DirectCompute
http://en.wikipedia.org/wiki/DirectCompute
http://www.khronos.org/opencl/
http://www.nvidia.com/object/what_is_cuda_new.html
http://software.intel.com/en-us/articles/intel-cilk/
http://www.threadingbuildingblocks.org/
http://developer.apple.com/mac/library/documentation/Performance/Reference/GCD_libdispatch_Ref/Reference/reference.html
http://msdn.microsoft.com/en-us/library/dd504870.aspx
http://msdn.microsoft.com/en-us/library/dd460717.aspx
http://www.khronos.org/opencl/
http://en.wikipedia.org/wiki/POSIX_Threads
http://www.tml.tkk.fi/~timo/
http://idav.ucdavis.edu/publications/print_pub?pub_id=1036
http://idav.ucdavis.edu/publications/print_pub?pub_id=1036
http://idav.ucdavis.edu/publications/print_pub?pub_id=1036
http://graphics.cs.williams.edu/papers/OptiXSIGGRAPH10/
http://s09.idav.ucdavis.edu/talks/03_tfoley_ProgrammingModels.pdf
https://graphics.stanford.edu/wikis/cs448s-10/FrontPage?action=AttachFile&do=get&target=tfoley-Programming+Models.pdf
http://bps10.idav.ucdavis.edu/talks/03-fatahalian_gpuArchTeraflop_BPS_SIGGRAPH2010.pdf
http://bps10.idav.ucdavis.edu/talks/03-fatahalian_gpuArchTeraflop_BPS_SIGGRAPH2010.pdf
http://bps10.idav.ucdavis.edu/talks/03-fatahalian_gpuArchTeraflop_BPS_SIGGRAPH2010.pdf
http://bps10.idav.ucdavis.edu/talks/03-fatahalian_gpuArchTeraflop_BPS_SIGGRAPH2010.pdf
http://www.upcrc.illinois.edu/workshops/paraplop10/papers/paraplop10_submission_17.pdf

49Winter 2011 – Beyond Programmable Shading

Questions?

http://www.cs.washington.edu/education/courses/cse558/11wi/

