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Overview

* Surface shaders
* Light shaders
— Shadow maps

* Reflections

— Planar reflections
— Environment maps

°[z,w,q,a,k,f,n]-buffer review
* Billboards

— Hair, foliage, smoke, etc.
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Approach for This Lecture

* Since many of you are more familiar with ray tracing than
rasterization...

* This lecture describes how basic material, illumination, and
visibility problems are solved in real-time rasterization-based
renderers (compared to how they are solved in a simple ray
tracer)
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(Surface shaders)

Surface Properties

Winter 2011 - Beyond Programmable Shading



Surface Shaders

*In ray tracing

— Your “materials” class defines the BRDF and provides the surface
properties to the BRDF such as diffuse color, specularity, etc.

* In rasterization

— A batch of primitives with the same “"materia
time

III

are rendered at the same

— "Material class” implemented in pixel shader
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(Light shaders)

Direct Illumination
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Direct Illumination

*In ray tracing

—“At a ray-surface intersection, trace rays to all lights and combine with
BRDF to compute final color”

* In rasterization

— Query visibility data computed in pre-pass for each light (pixel shader)
E.g., shadow mapping

— Combine lighting result with BRDF to compute final color (pixel shader)
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Shadow Mapping
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The Shadowing Problem
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The Shadowing Problem
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The Shadowing Problem
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Shadow Mapping

*Render depth image from light position

*Shadow lookup
—Transform eye samples to shadow map

—If shadow map value closer to light, pixel in shadow

WIIETS

SIGGRAPH 1978
Winter 2011 - Beyond Programmable Shading

12



Projective Aliasing

°*Occluder normal nearly orthogonal to light
rays
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Perspective Aliasing

* Mismatch between sampling distribution of eye-space samples
and shadow samples
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Light Space Sample Distribution
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Naive Shadow Mapping

* Wastes lots of space that is never sampled
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Naive Shadow Mapping

* Perspective aliasing near the camera

Winter 2011 - Beyond Programmable Shading

17



Naive Shadow Mapping

* Projective aliasing on surfaces aligned with light rays
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Shadow Map Techniques

* Hundreds of shadow map papers address perspective, projective,
and depth representation aliasing. For example:
— Perspective shadow maps (and many follow-up ideas)
—Warp shadow map to match receiver samples)
— Adaptive quadtree shadow maps
—Generate hundreds of small shadow maps at the correct resolution to match receivers
— Cascaded shadow maps (“Z-Partitioning”)

—Render small nhumber of shadow maps (~2-4) that split eye-space view frustum so
each shadow map covers a smaller depth range and is therefore a better fit for the
receivers in that partition

— (and the list goes on, and on, and on)

* The only apFroaches that directly address both perspective and
projective aliasing are

—Irregular rasterization
—Adaptive grid-based methods
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Z-Partitioning

* Split camera frustum in Z
* Use a different shadow map for each frustum partition
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Z-Partitioning

‘
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Z-Partitioning

’ﬂd 2, Courtesy of Valve Corporation
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Z-Part
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Z-Partitioning in Light Space
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Z-Partitioning Light Space Partitions
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Reflections
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MELWET G LIERI LGS

* Ray tracing

—"When hit specular surface, shoot new ray in direction determined by
sampling specular lobe of BRDF”

® Rasterization

— If planar surface (e.g., rear-view mirror in car), render image from back
side of surface, clipped by bounding box of planar model (pre-pass)

— In final rendering pass, query reflected-surface texture (pixel shader)
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Reflections from Arbitrary Surfaces

* Ray tracing

—"When hit specular surface, shoot new ray in direction determined by
sampling specular lobe of BRDF”

® Rasterization

— Render environment map (cube, dual paraboloid, etc) in pre-pass

— In final rendering pass, query environment map based on reflected ray
direction
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Graphics *-Buffer Glossary
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Overview

* Single depth layer
— Z buffer
— W bufffer
— G buffer
* Multiple depth layers

— A buffer
— K buffer
— F buffer
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Z-Buffer (aka “"Depth Buffer’)

* Purpose

—"Render geometry in any order and capture front-most depth layer”

* Key Attributes

— Fixed memory regardless of amount of geometry
— Accelerated in all current GPUs
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W-Buffer

* Purpose

—“Just like z-buffer but store depth in eye space (linear) rather than post-
projective screen space.”

* Key Attributes

— Similar storage to z-buffer (but always floating point)
— Different precision distribution across depth range
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G-Buffer

* Purpose

— Deferred rendering

—“"Render to an image-space buffer that captures per-pixel surface
information such that the lighting can be computed in a post-processing
image-space computation pass”

* Key Attributes

— Fixed memory requirements
— Decouples geometry from lighting
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A-Buffer

* Purpose

— "Render translucent and opaque geometry in any order, capture all depth
layers, and resolve to final image”

— Also capture per-sample coverage information for anti-aliasing

* Key Attributes

— Unbounded memory requirements
— Used in REYES / RenderMan
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K-Buffer

* Purpose

— "Render geometry that will generate fragments that are no more than k
out of order, and use k-buffer to do final streaming sort”

* Key Attributes

— Fixed memory requirements

— Requires read-modify-write operations on framebuffer or custom blending
logic
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F-Buffer

* Purpose

— “Capture all rendered fragments in a linear output stream”

* Key Attributes

— Unbounded memory requirements
— Indexed by re-rendering geometry

— Does not support random indexing by pixel position without sorting entire
f-buffer

— (Much like geometry shader’s “stream out”)
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N-Buffer

* Purpose

— Pre-blurred images that don’t suffer from down-sampling artifacts

* Key Attributes

— Recursively blurred stack of images that are all the same size
— Like mipmaps, but with no down-sampling
— Takes huge amount of memory unless image size is small
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Billboards

* Fine geometry (sub-pixel) and volumetric media are usually
handled with “billboards”

— A “billboard” is a camera-aligned, texture-mapped, partially transparent
quad

— Used for hair, fences, smoke, foliage, grass, ...
— No depth test. Alpha blending. Must render billboards in depth order.
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Billboards
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Summary

* Many of the illumination and surface material effects
supported in ray tracing or REYES can be implemented in the
current programmable shading pipeline

— Often involves a pre-pass to cache non-local visibility

— These caches almost always introduce artifacts, but greatly speed up
rendering

* Boundaries between rasterization and ray tracing are blurring

— (Limited) ray tracing in pixel shaders is increasingly common
— Ray tracing framebuffers is common
— Rasterization is highly-optimized special-case ray tracing
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Homework 1

* Will be on the web page this evening
* Due Monday, 1/24 (1.5 weeks)

* Join the class mailing list to get help from me and support
each other with logistics/systems problems
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Backup

Winter 2011 - Beyond Programmable Shading

42



Sample Distribution Shadow Maps

Slides by Andrew Lauritzen, Intel
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Sample Distribution Shadow Maps

* Needs of real-time applications

— Real-time applications need to constrain memory and time: “Authorable
performance”

— RMSM and 1ZB guarantee quality but vary time/memory

* SDSM idea

—“"What is the best shadow quality we can deliver using a fixed amount of
memory and time?”

— Automatically place a fixed nhumber of shadow map partitions based on
shadow receiver samples (same input as IZB and RMSM but different
optimization)

* Addresses perspective aliasing directly and projective aliasing
“when we get lucky”
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Z-Partitioning

* Split camera frustum in Z
* Use a different shadow map for each frustum partition
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Z-Partitioning

‘
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Where to Partition 2?2

* Logarithmic is the best [Lloyd et al. 2006]

— But only if the entire Z range is covered!
— Needs tight near/far planes

* Parallel-Split Shadow Maps [Zhang et al. 2006]

— Mix of logarithmic and uniform
— Requires user to tuneable a parameter
— Optimal value related to tight near plane...

* In practice, artists tune for specific views

— Tedious and not robust to scene/camera changes
— Ultimately suboptimal for arbitrary views
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Where to place shadow maps?

* Axis-aligned bounding box of frustum segment in light

* Does not consider vast segments of the shadow map that are
occluded
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Static Partitions (PSSM)

Too little resolution far!

Too little resolution clcee!
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Sample Distribution Shadow Maps

* Analyze the light-space sample distribution
— Find tight Z min/max
— Partition logarithmically based on tight Z bounds
— Fully automatic; adapts to view with no need for tuning

* Compute tight light space bounds for each partition

— Min/max of sample coordinates in light space
— Avoids including occluded samples in shadow map
— Greatly increases useful shadow resolution
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Example: PSSM

’ﬂd 2, Courtesy of Valve Corporation
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Example: PSSM Partitions
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lead 2, courtesy of Valve Corporation
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Example: PSSM Light Space

Winter 2011

53



Example: PSSM Light Space Partitions
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Example: SDSM
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Example: SDSM Partitions
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Example: SDSM Light Space
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Example: SDSM Light Space Partitions
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