Rasterization Rendering Effects Review

Aaron Lefohn, Intel / University of Washington
Mike Houston, AMD / Stanford

Winter 2011 - Beyond Programmable Shading

Overview

* Surface shaders
* Light shaders
— Shadow maps

* Reflections

— Planar reflections
— Environment maps

°[z,w,q,a,k,f,n]-buffer review
* Billboards

— Hair, foliage, smoke, etc.

Winter 2011 - Beyond Programmable Shading

Approach for This Lecture

* Since many of you are more familiar with ray tracing than
rasterization...

* This lecture describes how basic material, illumination, and
visibility problems are solved in real-time rasterization-based
renderers (compared to how they are solved in a simple ray
tracer)

Winter 2011 - Beyond Programmable Shading

(Surface shaders)

Surface Properties

Winter 2011 - Beyond Programmable Shading

Surface Shaders

*In ray tracing

— Your “materials” class defines the BRDF and provides the surface
properties to the BRDF such as diffuse color, specularity, etc.

* In rasterization

— A batch of primitives with the same “"materia
time

III

are rendered at the same

— "Material class” implemented in pixel shader

Winter 2011 - Beyond Programmable Shading

(Light shaders)

Direct Illumination

Winter 2011 - Beyond Programmable Shading

Direct Illumination

*In ray tracing

—“At a ray-surface intersection, trace rays to all lights and combine with
BRDF to compute final color”

* In rasterization

— Query visibility data computed in pre-pass for each light (pixel shader)
E.g., shadow mapping

— Combine lighting result with BRDF to compute final color (pixel shader)

Winter 2011 - Beyond Programmable Shading

Shadow Mapping

Winter 2011 - Beyond Programmable Shading

The Shadowing Problem

Winter 2011 - Beyond Programmable Shading

The Shadowing Problem

Winter 2011 - Beyond Programmable Shading

10

The Shadowing Problem

3

Winter 2011 - Beyond Programmable Shading

11

Shadow Mapping

*Render depth image from light position

*Shadow lookup
—Transform eye samples to shadow map

—If shadow map value closer to light, pixel in shadow

WIIETS

SIGGRAPH 1978
Winter 2011 - Beyond Programmable Shading

12

Projective Aliasing

°*Occluder normal nearly orthogonal to light
rays

Winter 2011 - Beyond Programmable Shading 13

Perspective Aliasing

* Mismatch between sampling distribution of eye-space samples
and shadow samples

¥
S

Winter 2011 - Beyond Programmable Shading

14

Light Space Sample Distribution
CLHEL VR E

S)
e Samples colored; yeXow = denser samples

s

Naive Shadow Mapping

* Wastes lots of space that is never sampled

) %’5 3
- e : ot
: {-. = { “ei .
& 2
i
Q > »
Qlif'{'?!

Winter 2011 - Beyond Programmable Shading

16

Naive Shadow Mapping

* Perspective aliasing near the camera

Winter 2011 - Beyond Programmable Shading

17

Naive Shadow Mapping

* Projective aliasing on surfaces aligned with light rays

Winter 2011 - Beyond Programmable Shading

18

Shadow Map Techniques

* Hundreds of shadow map papers address perspective, projective,
and depth representation aliasing. For example:
— Perspective shadow maps (and many follow-up ideas)
—Warp shadow map to match receiver samples)
— Adaptive quadtree shadow maps
—Generate hundreds of small shadow maps at the correct resolution to match receivers
— Cascaded shadow maps (“Z-Partitioning”)

—Render small nhumber of shadow maps (~2-4) that split eye-space view frustum so
each shadow map covers a smaller depth range and is therefore a better fit for the
receivers in that partition

— (and the list goes on, and on, and on)

* The only apFroaches that directly address both perspective and
projective aliasing are

—Irregular rasterization
—Adaptive grid-based methods

Winter 2011 - Beyond Programmable Shading

(RY)

Z-Partitioning

* Split camera frustum in Z
* Use a different shadow map for each frustum partition

< ;W%;:: £ oo S5,
x . e &
3 ‘$§”~’
2 ';\-g_; v
Q-‘g‘ >
g
it
My o
&t
I ‘a®
- il -'g

Z-Partitioning

‘
Winter 2011 - Beyond Programmable Shading

Z-Partitioning

’ﬂd 2, Courtesy of Valve Corporation

s

Winter 2011 - Beyond Programmable Shading

22

Z-Part

TLLLLLULLLL AR SRR TR

ALTELTETEELPEEIANEERY. WXUNTRRNOR ¥
"ﬂ!’ffﬂg’flféflffgé %é

itioning

23

Winter 2011 - Beyond Programmable Shading

Z-Partitioning in Light Space

Winter 2011

24

Z-Partitioning Light Space Partitions

Winter 2011

25

Reflections

Winter 2011 - Beyond Programmable Shading

26

MELWET G LIERI LGS

* Ray tracing

—"When hit specular surface, shoot new ray in direction determined by
sampling specular lobe of BRDF”

® Rasterization

— If planar surface (e.g., rear-view mirror in car), render image from back
side of surface, clipped by bounding box of planar model (pre-pass)

— In final rendering pass, query reflected-surface texture (pixel shader)

Winter 2011 - Beyond Programmable Shading

27

Reflections from Arbitrary Surfaces

* Ray tracing

—"When hit specular surface, shoot new ray in direction determined by
sampling specular lobe of BRDF”

® Rasterization

— Render environment map (cube, dual paraboloid, etc) in pre-pass

— In final rendering pass, query environment map based on reflected ray
direction

Winter 2011 - Beyond Programmable Shading 28

Graphics *-Buffer Glossary

Winter 2011 - Beyond Programmable Shading

A

Overview

* Single depth layer
— Z buffer
— W bufffer
— G buffer
* Multiple depth layers

— A buffer
— K buffer
— F buffer

Winter 2011 - Beyond Programmable Shading 30

Z-Buffer (aka “"Depth Buffer’)

* Purpose

—"Render geometry in any order and capture front-most depth layer”

* Key Attributes

— Fixed memory regardless of amount of geometry
— Accelerated in all current GPUs

Winter 2011 - Beyond Programmable Shading

31

W-Buffer

* Purpose

—“Just like z-buffer but store depth in eye space (linear) rather than post-
projective screen space.”

* Key Attributes

— Similar storage to z-buffer (but always floating point)
— Different precision distribution across depth range

Winter 2011 - Beyond Programmable Shading

32

G-Buffer

* Purpose

— Deferred rendering

—“"Render to an image-space buffer that captures per-pixel surface
information such that the lighting can be computed in a post-processing
image-space computation pass”

* Key Attributes

— Fixed memory requirements
— Decouples geometry from lighting

Winter 2011 - Beyond Programmable Shading

33

A-Buffer

* Purpose

— "Render translucent and opaque geometry in any order, capture all depth
layers, and resolve to final image”

— Also capture per-sample coverage information for anti-aliasing

* Key Attributes

— Unbounded memory requirements
— Used in REYES / RenderMan

Winter 2011 - Beyond Programmable Shading

34

K-Buffer

* Purpose

— "Render geometry that will generate fragments that are no more than k
out of order, and use k-buffer to do final streaming sort”

* Key Attributes

— Fixed memory requirements

— Requires read-modify-write operations on framebuffer or custom blending
logic

Winter 2011 - Beyond Programmable Shading

35

F-Buffer

* Purpose

— “Capture all rendered fragments in a linear output stream”

* Key Attributes

— Unbounded memory requirements
— Indexed by re-rendering geometry

— Does not support random indexing by pixel position without sorting entire
f-buffer

— (Much like geometry shader’s “stream out”)

Winter 2011 - Beyond Programmable Shading

36

N-Buffer

* Purpose

— Pre-blurred images that don’t suffer from down-sampling artifacts

* Key Attributes

— Recursively blurred stack of images that are all the same size
— Like mipmaps, but with no down-sampling
— Takes huge amount of memory unless image size is small

Winter 2011 - Beyond Programmable Shading

37

Billboards

* Fine geometry (sub-pixel) and volumetric media are usually
handled with “billboards”

— A “billboard” is a camera-aligned, texture-mapped, partially transparent
quad

— Used for hair, fences, smoke, foliage, grass, ...
— No depth test. Alpha blending. Must render billboards in depth order.

Winter 2011 - Beyond Programmable Shading

38

Billboards

L - : 2
L V9%
T,

Winter 2011 - Beyond Programmable Shading

Summary

* Many of the illumination and surface material effects
supported in ray tracing or REYES can be implemented in the
current programmable shading pipeline

— Often involves a pre-pass to cache non-local visibility

— These caches almost always introduce artifacts, but greatly speed up
rendering

* Boundaries between rasterization and ray tracing are blurring

— (Limited) ray tracing in pixel shaders is increasingly common
— Ray tracing framebuffers is common
— Rasterization is highly-optimized special-case ray tracing

Winter 2011 - Beyond Programmable Shading

40

Homework 1

* Will be on the web page this evening
* Due Monday, 1/24 (1.5 weeks)

* Join the class mailing list to get help from me and support
each other with logistics/systems problems

Winter 2011 - Beyond Programmable Shading

41

Backup

Winter 2011 - Beyond Programmable Shading

42

Sample Distribution Shadow Maps

Slides by Andrew Lauritzen, Intel

Winter 2011 - Beyond Programmable Shading

43

Sample Distribution Shadow Maps

* Needs of real-time applications

— Real-time applications need to constrain memory and time: “Authorable
performance”

— RMSM and 1ZB guarantee quality but vary time/memory

* SDSM idea

—“"What is the best shadow quality we can deliver using a fixed amount of
memory and time?”

— Automatically place a fixed nhumber of shadow map partitions based on
shadow receiver samples (same input as IZB and RMSM but different
optimization)

* Addresses perspective aliasing directly and projective aliasing
“when we get lucky”

Winter 2011 - Beyond Programmable Shading

44

Z-Partitioning

* Split camera frustum in Z
* Use a different shadow map for each frustum partition

< ;W%;:: £ oo S5,
x . e &
3 ‘$§”~’
2 ';\-g_; v
Q-‘g‘ >
g
it
My o
&t
I ‘a®
- il -'g

Z-Partitioning

‘
Winter 2011 - Beyond Programmable Shading

Where to Partition 2?2

* Logarithmic is the best [Lloyd et al. 2006]

— But only if the entire Z range is covered!
— Needs tight near/far planes

* Parallel-Split Shadow Maps [Zhang et al. 2006]

— Mix of logarithmic and uniform
— Requires user to tuneable a parameter
— Optimal value related to tight near plane...

* In practice, artists tune for specific views

— Tedious and not robust to scene/camera changes
— Ultimately suboptimal for arbitrary views

Winter 2011 - Beyond Programmable Shading

47

Where to place shadow maps?

* Axis-aligned bounding box of frustum segment in light

* Does not consider vast segments of the shadow map that are
occluded

Winter zuii —"beyuniu rivyrannnauvic sSnauiny

48

Static Partitions (PSSM)

Too little resolution far!

Too little resolution clcee!

Winter 2011 - Beyond Programmable Shading

Sample Distribution Shadow Maps

* Analyze the light-space sample distribution
— Find tight Z min/max
— Partition logarithmically based on tight Z bounds
— Fully automatic; adapts to view with no need for tuning

* Compute tight light space bounds for each partition

— Min/max of sample coordinates in light space
— Avoids including occluded samples in shadow map
— Greatly increases useful shadow resolution

Winter 2011 - Beyond Programmable Shading

50

Example: PSSM

’ﬂd 2, Courtesy of Valve Corporation

s

Winter 2011 - Beyond Programmable Shading

51

Example: PSSM Partitions

m

“
:,—“

atmm

D NOTOTNIIRNEN RS AL SSVRL SRR ANARA ALY

mmmm‘n\m

O, SNERNETINETANAVNVAVERANAIA

IRASSTASARANANALY

lead 2, courtesy of Valve Corporation
Winter 2011 - Beyond Programmable Shading

52

Example: PSSM Light Space

Winter 2011

53

Example: PSSM Light Space Partitions

Winter 2011 54

Example: SDSM

|

Winter 2011 - Beyond Programmable Shading

Hr M—;}dz, ‘

urtesy of Valve Corporation

55

Example: SDSM Partitions

i

ETTTETTUTTET LR RN T LR NN LU D S

% 3 RERE LR L LEURUULREARANA LA TN S

SRR TELRR AR AN
3 i——:r255’5’5’////////! RNy

L i

——

4
ey,

R

(@)]
£
©

©
N
n
Q
@)

©

-

-

(©

| .

(@)]

o

He
o
©

C

(@]

>

()]
0

|
i
i
(@]
o\

e

(O]
)
=

Example: SDSM Light Space

Winter 2011

57

Example: SDSM Light Space Partitions

Winter 2011 58

