Using geometric corners to build a 2D mosaic from a set of images
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Abstract

The main problem for building a mosaic is the com-
putation of the warping functions (homographies). In
fact two cases are to be distinguished. The first is when
the homography is mainly a translation (i.e. the rota-
tion around the optical axis and the zooming factor
are small). The second is the general case (when the
rotation around the optical axis and zooming are arbi-
trary). Some efficient methods have been developed to
solve the first case. But the second case is more dif-
ficult, in particular, when the rotation around the op-
tical axis is very large (90 degrees or more). Often in
this case human interaction is needed to provide a first
approzimation of the transformation that will bring us
back to the first case. In this article we present a
method to solve this problem without human interac-
tion for any rotation around the optical azis and fairly
large zooming factors.

1 Introduction

In the last few years the interest in mosaicing has
grown in the vision community because of its many
applications (i.e. image compression, detection, video
conferencing...). A mosaic is a collection of images
and the transformations between them. In the case
of a collection of images of a planar scene taken from
different points of view or a collection of images of a
3D scene taken from the same point of view (e.g. the
only difference between images is a rotation around
the optical center of the camera), the transformation
between the images is a linear transformation of the
projective space P2, called a collineation or a homog-
raphy [Fau93, Har94]. We call these mosaics 2D mo-
saics because when we choose a reference image from
the collection, all other images can be warped in the
2D coordinate system attached to this image by the
corresponding homographies. Other possibilities such
as using a cylindrical projection also exist[MB95].

In this article we deal only with the 2D mosaics,
in particular with the homography estimation. We

distinguish two cases. The first is when the homogra-
phy is mainly a translation (i.e. the rotation around
the optical axis and zooming are small). The second is
the general case (when the rotation around the optical
axis and zooming are large). Some efficient methods
have been developed to solve the first case. For ex-
ample, if the overlap of the images is very large, (i.e.
the motion is very small) it has been shown that a
non linear criterion minimization using the Levenberg-
Marquardt method yields very good results [Sze94],
but it is very sensitive to the local minima and compu-
tationally expensive. In another case when the over-
lap is smaller we can use a hierarchical matching to
avoid local minima|Qua84, WTK87, BAHH92]. For
larger camera motion the phase correlation method
has been used [KH75, Bro92]. However for large ro-
tations around the optical axis, very few methods are
efficient. Among the best methods we find the work of
Dani and Chaudhuri: Their method works for up to 15
degrees rotations using angles between edges [DC95].
The mutual Information method for up to 30 degrees
of viola works [Vio95], but it requires a large overlap
between images (i.e. larger than 50%).

This article presents a corner-based method to com-
pute the homography between two images with small
overlap (=50%) and arbitrary rotation around the op-
tical axis. The computation takes a few seconds.

Section 2 presents the homography estimation using
four points and the algorithm derived when no further
assumptions are made. In section 3 we present the cor-
ner model and in section 4 an efficient algorithm that
uses this model and a dual space representation of lines
to estimate homographies. The method is illustrated
with some results.

2 Computing a homography with four
points

2.1 The equations

We use homogeneous coordinates to represent a
point, thus a point m in an image will be represented
by the vector (z y z)?, with (z/z y/2)" its cartesian
coordinates. As mentioned in the introduction, the
images of a plane seen from two points of view are



related by a homography H. Thus a point m; = (1
y1 21)¢ of the first image has a corresponding point in
the second image mo = (T2 Y2 22) defined by:

T2 hoo  hor  ho2 z1
me=Hmi | y2 | =| hio hi1 hi2 Y1
29 hag  har  hao 21

(1)

Homographies and points are defined up to a
nonzero scalar, thus we have 8 degrees of freedom for
H (often, if hoy is different from zero, we take hao
=1, and (z/z y/z 1)! for the points). Every corre-
spondence (mi,ms) gives us two equations (2), thus
to compute H we need four correspondences.
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2.2 The algorithm
Now, if no assumptions are made about the cam-

era motion, we have the following algorithm called
ALGO1:

e step 1: Extract points of interest from the two
images.

e step 2: Compute all possible homographies de-
fined by pairs of fourtuples of points of interest.

e step 3: Keep the best one.

In detail:

step 1: To extract points we use the Harris’ detector
[HS88], keeping only the best one in a given neighbor-
hood. This is to get a homogeneous distribution of
points within the whole image.

step 2: Knowing nothing about the motion, ev-
ery point of the first image can match any point in
the second image. Assuming that the camera is al-
ways on the same side of the object we know that any
non self intersecting quadrilateral (p11 pi2 p13 p14) in
image 1 matches a non self intersecting quadrilateral
(P21 P22 P23 posa) in image 2 with the same orienta-
tion(a non self intersecting quadrilateral has two pos-
sible orientations). If ny and ne are the numbers of
extracted points in image 1 and in image 2, respec-
tively, we have 4(3*)(3?) possible homographies Hj
between these points.

step 3: We have to find, among the homographies
Hy,, the best estimation of the homography between
the two images. The number of homographies is very
large, so we use a simple method to validate them.
To check an Hj we correlate the intensity values at
all points of interest p;; of the first image with those
of their corresponding points Hipy;. The best one is

thus the homography which maximizes the following
correlation criterion (3).

1
Hop: = max(~ ZZNCC(pu,Hkpu)) (3)

Where ZNCC is the zero mean cross-correlation
(between -1 and +1, for more information see
[FHM'193]) using sub-pixel values for the points in
the second image. We use only the points Hypy; lying
within the second image. n is the number of those
points.

The necessary condition for the algorithm to find a
solution is that among the extracted points in the first
image there exist four points having their correspond-
ing points in the second image. So we need a stable
point extractor. In table 1 we present a few results
to show the stability of the Harris extractor. For this
test we used the two images of figure 1. The original
images are 768*512.

Nb pts || Nb pts inter. || % match || Dist.(pizels)
12 6 66 0.9
54 31 75 1.1
133 77 76 1.1
467 276 80 1.2

Table 1: The first column shows the numbers of the
extracted points in the first image, the second column
the number of points matched in the common part of
the two images, the third column shows the percent-
ages of matched points in the common part of the two
images, and the last column the distances between the
extracted points and the corresponding points warped
with the estimated homography.

2.3 Results

We use table 1 to produce an empirical formula 4 to
estimate the number of points that we need to extract
to have a sufficient number of matches to find a good
estimation for the homography.

nbint
Mbest overlap * match )
Where nb.,; the number of points that we need to ex-
tract. nb;,: is the number of point desired within the
overlap image. overlap is the percentage of the over-
lap image. match is the percentage of match (colon 3
of table 1).

Figure 1 shows an example of a mosaic built from
the two images. We need 4 matches within the overlap
image, but usually we overestimate this number to
insure to find 4 good matches (e.g. we usually take 6
points). Thus for the example of figure 1 with formula



4 we have nb;,:—6, overlap~70%, match—66% and
thus nbe,:~12. In image 1, 12 points are extracted,
points 1 to 9 are the points lying in the common part
of the two images, points 1 to 6 are matched, and
points 1 to 4 are the points giving H,,:. Note that
only the first 6 points have a corresponding point thus
1 corresponds to 1, 2 corresponds to 2,...but points
7 to 12 do not correspond to 7 to 11 in the second
image.

Figure 1: Image 1 at the top, image 2 in the mid-
dle, in black the extracted points, in white the points
matched, the mosaic built with H,,: at the bottom.

2.4 Complexity problem

The results obtained with this method are satisfac-
tory. Notice that the overlap is about 70%, in this case
only twelve extracted points are sufficient to have at
least four corresponding points in the common part.
But in spite of this small number of extracted points
the computation time is fairly long (i.e. 12 minutes

CPU), this is because there are a lot of homographies
to check (Step 2 of the algorithm has approximatively
1 million homographies to check). For a smaller over-
lap, for example 50%, we have to extract twenty points
in the two images, this gives us approximately 100 mil-
lions homographies to check and requires a few hours
of computation. Due to this complexity, the method
is not usable for small overlap.

3 Corner Model

The main idea is to use more information from the
corner than just its coordinates. To obtain more infor-
mation from the corner, we use the corner model de-
veloped by Blaszka and Deriche [DB93]. This method
uses a corner model which utilizes a 2D blurring filter
for the modelization and fits the model to the image
data by non-linear minimization, for more information
see [BD94].

3.1 Corner Model

Yo

Figure 2: A Corner Model.

The corner model in figure 2 is completely described
by 7 parameters noted (xo,¥0,6,5,0,A,B). We ini-
tialize the corner model with a Harris point and a win-
dow size and obtain the 7 parameters of the best fitted
model in this window and a measure of the quality of
the fit. This measure is the mean least-squares differ-
ence between the grey-levels in the image and those
in the model (between 0 and 255). We keep only the
corners with a small measure. The points fitted by the
model are called D.B. corners.

3.2 Results

Figure 3 shows the results obtained with a window
size of 16*16 for point 5 in the image 1 of figure 1, and
figure 4 gives the result obtained for the corresponding
point (i.e. point 5) in the image 2 of figure 1.
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Figure 3: Zoom of image 1 at the point 5, the cross
is the Harris point, the two segments are the corner,
measure=2.7.

Figure 4: Zoom of image 2 at the point 5, the cross
is the Harris point, the two segments are the corner,
measure=2.1.

4 Computing an homography with two
D.B. corners

In this section we present a method to compute ho-
mographies using only two D.B. corners instead of four
simple corners. This is to decrease the complexity of
the algorithm presented in section 2. We use the two
lines defined by the corner model. These two lines
d and d' can be computed from the corner parame-
ters, and more precisely from (xg, 0,0, 8) as defined
in section 3.
4.1 Homography computation using lines

Whilst in the projective plane, P2, we can use the
duality principle between points and lines in this space
(i.e. that points and lines are algebraically equiva-
lent). Thus we have an homography between the cor-
responding lines in two images. We can compute this

homography as in section 2. We need four lines to
compute a homography. Using the notation of section
3, the two lines d and d' of a D.B. corner are defined
by the following formula:

(—sin(a1) cos(a1) xosin(a1) — yo cos(ai))t

d=
{d': (—sin(a2) cos(as) zosin(as) — yo cos(az))t ()

Where a4 :a—g and oo :0+§

We need only two D.B. corners instead of four sim-
ple corners to compute an homography. If ny and ns
are the numbers of D.B. corners extracted in images
1 and 2 respectively, we have only 2(3*)(5*) homogra-
phies to compute which reduces the complexity of the
algorithm to O(n?n2). Since we need only two D.B.
corners to compute the homography, consequently we
have to extract fewer points to insure two correspond-
ing D.B. corners in the image overlap. Thus the use of
D.B. corners decreases the overall complexity as well
as the magnitudes of n; and ns.

4.2 The relationship between the homog-
raphy relating points and its dual re-
lating lines

It is well known that if there is an homography H
between points in the projective plane, then H~?is the
dual homography between lines [Fau93|. If we match
lines we estimate H ¢ instead of H.

Note that this is equivalent to computing H using
the four points of intersection of the four lines of the
two D.B. corners. For example in figure 5 we show the
two corners (a; and b; in image 1 and ap and by in
image 2), and the two line intersections (c; and d; in
image 1 and ¢2 and ds in image 2).

Figure 5: Left: a; and b; the two corners, ¢; and d;
the two intersection points, Right: as and by the two
corresponding corners, ¢ and ds the two intersection
points.

4.3 The algorithm

We can thus use directly the four points method
(section 2), replacing the four points by four lines.
This gives us the algorithm below called ALGO2:

e step 1: extract points of interest from the two
images.



e step 2: fit the corner model to the extracted
points.

e step 3: Compute all homographies between all
pairs of D.B. corners in image 1 and in image 2.

e step 4: keep the best one .

e step 5: refine the best one .

With respect to ALGO1 we added two steps. Ob-
viously we added step 2, to fit the corner model to
the extracted points to get the lines and compute the
homographies. We also added step 5 (i.e. the refining
step). In spite of a better localization of D.B. corners
( see table 2), we must not forget that we compute
the homography using lines and that an error in the
lines induces an error in the homography. To have
an idea of the effect of this error we can think of the
dual case of computing the homography using points
(as, by, ¢iy d; i=1,2) from the four lines as shown in fig-
ure 5. The two D.B. corners (a;, b;) are very well lo-
calized, but the intersections of lines (c;, d;) may not
be very well localized. Thus we use the best homog-
raphy to initialize a local refining method to compute
an improved one (see section 4.4).

We can further improve the algorithm, by keeping
the first refinable homography instead of computing
all the homographies between the D.B. corners and
keeping the best one. This gives us the following al-
gorithm called ALGO3:

e step 1: extract points of interest from the two
images.

e step 2: fit the corner model.

e step 3: for all computed homographies :

— if criterion(3) is close to 1, try to refine H

— Stop when a successful refinement is found.

This algorithm gives us the first pair of good corre-
sponding D.B. corners, which avoids computing all
the homographies. This is useful if we extract too
many points from the two images, because we usually
quickly get a good pair of corresponding D.B. corners.

Nb pts || Nb pts inter. || % match || Dist.(pizels)
10 6 85 0.4
20 12 85 0.5
39 18 66 0.5
93 52 69 0.7

Table 2: The first column shows the number of ex-
tracted points, the second column the number of
points matched in the common part of the two images,
the third column shows the percentages of matched
points, and the last column the distances between the
extracted points and the corresponding points.

In table 2 we notice that for a small number of D.B.
corners extracted in the two images the percentage of
matches is very high (i.e. 85%) in contrast with the
percentage of matches for the simple corners (table 1).
Thus the matching based on the D.B. corner model
seems more robust than the one based on the Harris
extractor.

4.4 The refining step

For the refining step we could use the methods cited
in the introduction. Instead we use a very fast and
simple method to refine the homography H,,;. Tak-
ing advantage of the good initialization, we consider
that the scale and the rotation around the optical axis
are roughly contained in H,y¢, and assume that locally
the real homography is H,,; up to a small translation.
Each point p;; in image 1 has its corresponding point
H,pip1i, thus to refine H,y, we translate this point in
a small neighborhood and keep the point which corre-
lates best with py;. This yields a new list of matched
points, which we use to compute a new estimation of
the homography by a non-linear minimization tech-
nique. We check this new homography using the cor-
relation criterion (3) with more Harris points, if the
criterion is close to 1 (e.g. >0.8) we stop the algo-
rithm.

4.5 Speeding up the algorithm using a
coarse to fine approach

For a small number of D.B. corners the fitting step
takes up the main computation time. To speed up the
algorithm we use a Multiscale Method: the fitting step
takes less time at the coarse level, because we fit the
corners with a smaller window size. So, we run first the
algorithm at the coarsest level and refine iteratively
the homography at all subsequent levels until we reach
the highest resolution (i.e. the original image).

4.6 Results

All the results are for a SPARC Station 20.

Figure 6 shows the results obtained with ALGO3,
we see that they are comparable with those obtained



with ALGO1 (figure 1). As the overlap is about 70%,
7 D.B. corners are sufficient to insure that we have at
least two corresponding D.B. corners. The computa-
tion time is 10 seconds, this is because we have only
approximatively 1600 homographies to check, and in
this case the computation time is mainly the corner
fitting operation.

In figure 7 the overlap is about 50% and we have
add a rotation of 30 degrees. Having a 50% overlap
we need about 10 D.B. corners, and there are approx-
imatively 8000 homographies. In this case the com-
putation time is 12 seconds, again most of it for the
corner fitting operation.

In figure 8, we scanned two postcards of Pythagor-
eio (Samos Island-Greece), we still have 12 seconds
CPU.

Figure 9 shows an interesting case, the overlap is
about 50% and the second image is upside down. We
still need 10 corners and we still have 12 seconds CPU.

In figure 10 we have a very large zoom (= 2), this
gives us a 20% overlap. In this case we have two prob-
lems, the first is the small overlap, the second is the
size of the features. For this reason we had to extract
more points (about 30). The number of homographies
is roughly 500000, the computation time is 8 minutes.

5 Conclusions

In this article we have presented a method to com-
pute the homography between two images, with any
rotation around the optical axis and a large zoom-
ing factor. The method relies on finding geometric
features,(i.e. corners), which contain more informa-
tion than simple points. This allows us to cut down
the complexity of the matching between image fea-
tures and hence to tackle more difficult cases than with
points-based methods.
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Figure 7: Top: the first image, Middle: the second
image (30 degrees rotation arround the optical axis
and different viewing direction), Bottom: the mosaic.

Figure 6: Top: the first image, Middle: the second
image, Bottom: the mosaic.
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Figure 8: Top: the two images, Bottom: the mosaic.



Figure 9: Top: the first image, Middle: the second
image (180 degrees rotation arround the optical axis
and different viewing direction), Bottom: the mosaic.

Figure 10: Top: the first image, middle: the second
image (scale factor of 2 and different viewing direc-
tion), Bottom: the mosaic.



