Topicsin Articulated Animation

Reading

Shoemake, “ Quaternions Tutorial”

Animation

Articulated models:
® rigid parts
® connected by joints

They can be animated by specifying the joint angles (or other
display parameters) as functions of time.
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Character Representation

Character Models are rich, complex
® hair, clothes (particle systems)

® muscles, skin (FFD’s etc.)

Focusisrigid-body Degrees of Freedom (DOFs)

® joint angles




Simple Rigid Body — Skeleton

Copyright © Squaresoft 1999

Kinematics and dynamics
Kinematics: how the positions of the parts vary as afunction of the
joint angles.

Dynamics. how the positions of the parts vary as a function of
applied forces.

K ey-frame animation

® Eachjoint specified at various key frames (not necessarily the same as other
joints)

® System doesinterpolation or in-betweening

Doing thiswell requires:
® A way of smoothly interpolating key frames. splines
® A good interactive system
® A lot of skill on the part of the animator

Efficient Skeleton: Hierarchy

® each bonerelative to parent
KoY ZisOrsPrs O
® easy tolimit joint angles
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Computing a Sensor Position

XYool T Forward kinematics
t. ® uses vector-matrix multiplication
0,6.0 ® transformation matrix is composition of all joint

transforms between sensor/effector and root
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Joints = Rotations

To specify a pose, we specify the joint-angle rotations

Each joint can have up to three rotational DOFs

1 DOF: knee 2 DOF: wrist 3 DOF: arm
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Euler angles

An Euler angle is arotation about a single Cartesian axis

Create multi-DOF rotations by concatenating Eulers

Can get three DOF by concatenating:

Euler-X Euler-Y Euler-Z
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Singularities

What isasingularity?

® continuous subspace of parameter space all of whose elements map to same
rotation

Why is this bad?

® inducesgimbal lock - two or more axes align, resultsin loss of rotational
DOFs (i.e. derivatives)

—rsantation Intaracticn Tes

ﬂ!ﬁiﬁ Done Test m‘ = N.‘.,‘

Wl

-n
f Ew

= = z [
st | sop | oo | st [cumter| a5 wemory| 25

12




Singularitiesin Action

An object whose orientation is controlled by Euler rotation XY Z(6,¢,07)

(0,0,0) : Okay

(0, £90¢°, 0) : X and Z axes align
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Eliminates a DOF

In this configuration, changing 6 (X Euler angle) and o (Z Euler angle) produce
the same resullt.

No way to rotate around world X axis!

Ao (Z-rot A¢ (Y-rot AQ (X-rot

14

Resulting Behavior

No applied force or other stimuli can induce
rotation about world X-axis

The object locks up!!
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Singularitiesin Euler Angles

Cannot be avoided (occur at 0° or 90°)
Difficult to work around

But, only affects three DOF rotations
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Other Propertiesof Euler Angles

Several important tasks are easy:
® interactive specification (sliders, etc.)
® joint limits
® Euclidean interpolation (Hermites, Beziers, etc.)
— May be funky for tumbling bodies

— finefor most joints
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Quaternions

But... singularities are unacceptable for IK, optimization

Traditional solution: Use unit quaternions to represent rotations

® 33 has same topology as rotation space (a sphere), so no singularities
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History of Quaternions

Invented by Sir William Rowan Hamilton in 1843

H =w+ix+jy+kz

wherei?=j? =k’ =ijk =-1
| still must assert that this discovery appears to me to be asimportant for the middle of the nineteenth
century as the discovery of fluxions [the calculus] was for the close of the seventeenth.

Hamilton

[quaternions] ... although beautifully ingenious, have been an unmixed evil to those who have touched
themin any way.

Thompson
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Quaternion as a 4 vector
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Axis-anglerotation as a quaternion

W
X (W r
q_y_(vj
Z

_(cos(6/2)
_[sin(6/2)rJ

21

Unit Quaternions

N < X =

w=/1- (X +y*+7°)

[af=1
X +y + 22 +wW =1
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Quaternion Product

W | W, _ WW, —V,; -V,
Vi A\ Vs, WV, +W,V, +V,; XV,

W sty
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Quaternion Conjugate

R

P) =p
(Pa) =q'p’
(p+09) =p +q
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Quaternion Inverse

q7q=1

q™ :q*/|q|:(_Vl//]/|q|=[_\/\\//}/(vv2+v-v)
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Quaternion Rotation

(UG
) VVVJ(pr—r\)/XVJ

wp-v—wp-v=0

ko) J

What about a quaternion productq,q.,?

W(WP —pV) + (P - V)V +V(Wp —pX V)J
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Quaternion constraints

Restricting the rotation cone

. 1-cos(6,)
. — =

Restricting the rotation twist around an axis

9,°+q,”

o
tan(g/2) = Jess
Oy
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M =

Matrix Form
w
X
q:
y
Z

1-2y*—27"  2xy+2wz = 2XZ—2wy
2xy—2wz  1-2x*-27°  2yz+2wx
2XZ+2wy  2yz—2wx 1-2x*—2y?
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Normalized Quaternion Matrix Form

q,=aq,
w
11 X
4y =17
lafl| v
V4

||q||2—2y2—222 2Xy + 2wz 2XZ— 2wy
M, :ﬁ 2Xy — 2Wz ||q||2—2x2—222 2yz+ 2Wx

2XZ+ 2wy 2yz— 2WX ||q||2 —2x2 - 2y?
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Quaternion interpolation

Spherical linear interpolation (SLERP)

sin@)(-1) ,  sin@)t
sin(6) ? sin(o)

derp(t;q,,0,) =
COS(Q) =0 -0,
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Spherical cubic interpolation (SQUAD)

squad(t; 0,0, G5, q,) = slerp(2t(1-t); slerp(t; g, 0,), Slerp(t; a,, Gs))
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Quaternions. What Works

Simple formulae for converting to rotation matrix
Continuous derivatives - no singularities

“Optimal” interpolation - geodesics map to shortest paths in rotation
Space

Nice calculus (corresponds to rotations)
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