Differential Constraints

Beyond Pointsand Springs

* You can make just about anything out of point
masses and springs, in principle

e In practice, you can make anything you want
aslong asit'sjello

» Constraintswill buy us:
— Rigid linksinstead of goopy springs
— Waysto makeinteresting contraptions

A bead on awire

* Desired Behavior:

—Thebead can didefreely
alongthecircle

—It can never come off,
however hard we pull

* Question:

—How doesthe bead move
under applied for ces?

Penalty Constraints

* Why not usea spring to hold the
bead on the wire?

* Problem:
m » — Weak springs = goopy

constraints

— Strong springs = neptune
express!

A classic stiff system




Thebasictrick (f = mv version)
N f * 1st order world.
a T’ * Legal velocity: tangent to
circle(Nwv =0)

* Project applied forcef onto
tangent: f ' =f +f,

» Added normal-direction

forcef,: constraint force

* No tug-of-war, no stiffness

f=——°"N f'=f+f,

f=ma

Sameidea, but...
Curvature (k) hasto match.

k depends on both a and v:

—thefaster you'regoing, the
faster you haveto turn

Calculatef_toyield alegal
combination of aand v

Not assimple!

Now for the Algebra ...

* Fortunately, there’'sageneral recipefor
calculating the constraint force

» First, asingle constrained particle

* Then, generalizeto constrained particle
systems

Representing Constraints

|. Implicit:
C(x)=x|-r=0




Maintaining Constraints Differentially

e Start with legal position
and velocity.

» Useconstraint forcesto
ensurelegal curvature.

Constraint Gradient

I mplicit:

C=0 legad position
C=0 lega velocity

C=0 legal curvature

C(x)=|x|-r=0

Differentiating C gives
a normal vector.
Thisisthedirection

our constraint force
will point in.

Constraint Forces

Constraint force: gradient

vector timesa scalar A

Just one unknown to solve
for

Assumption: constraintis
passive—no energy gain or
loss

Constraint Force Derivation

OCAGV f.=AN
C=N-x fif
2 X= :
=—(N-Xx m
@1 )
=N-x+N-% Set C =0, solvefor A:
\~u|BZ.X|Z;ﬂ
N-N N-N
: Constraint forceisAN.
Notation: N =2C K = 9°C onstraint forcels

ox' oot




Example: Point-on-circle Drift and Feedback

C=[x[-r . Write down the constraint « Inprinciple, clamping C at zerois enough
equation.
~JdC_x o e Two problems:
|w||: ) Takethederivatives. . . o
x X e o . — Constraints might not be met initially
3 . Substitute into generic .
N=2C€ HFTTmL template, smplify. — Numerical errorscan accumulate
oxdr [l x-x \ « A feedback term handles both problems:
N-x N-f 1 Ax.wvm C =—aC - BC, instead of
A=-m — =—I|m —m(x-x)—x-f . .
N-N N-N _x_ X-X C=0 o and  are magic constants.
Tinkertoys Constrained particle systems
« Now we know how to simulate a bead on a wire. « Particle system: apoint in state space
« Next: a constrained particle system. * Multiple constraints:
—E.g. congtrain particle/particle distance to make — each isafunction Ci(xy,X,,...)
rigid links, — Legal state: C=0, Vi
« Sameidea, but...

— Simultaneous projection

— Constraint force: linear combination of
constraint gradients

* Matrix equation




Compact Particle System Notation

&H—N:%E:.UNL

q=WQ
CHT.:@,:;»L

3n-long state vector. "
3n-long force vector. "

. 3nx 3n diagonal mass |w- 3

matrix. m,
W: M-inverse (element- wise
reciprocal) )

=02

Particle System Constraint Equations

Matrix equation for A

[IWJTA =-Jq -[IWQ|

More Notation

Constrained Acceleration

Derivation: just like bead-on-wire.

How do you implement all this?

 We haveaglobal matrix equation

« Wewant to build modelson thefly, just like
masses and springs

» Approach:

— Each constraint addsits own pieceto
the equation

M atrix Block
Structure

C

Each constraint
contributes one or more
blocksto the matrix

Sparsity: many empty
blocks

Modularity: let each
constraint computeits
own blocks

Constraint and particle
indices deter mine block
locations




Global and L ocal

Constraint Structure

Each constraint 5 .
must know how dC oC f ¢°C 0oC

to compute these ﬂ ﬂ X1 0x [ 9X10t" X0t
_

Distance Constraint

OH_XH|XN_|_.

Constrained Particle Systems
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Clear Force Apply forces
Accumulators

Added Step
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Compute and apply

Return to solver Constraint Forces




Constraint Force Eval |mpressyour Friends

» After computing ordinary forces » Therequirement that constraints not add or

— Loop over constraints, assemble remove energy is called the Principle of
global matrices and vectors. Virtual Work.
— Call matrix solver to get A, multiply « TheA'sarecalled Lagrange Multipliers.

by J" to get constraint force. o . .
* Thederivative matrix, J, iscalled the

— Add constraint forceto particle Jacobian Matrix.
for ce accumulators.

A whole other way to doit. Parametric Constraints

Parametric:
X =r[cos0,sn 0]

\- » Constraint isalways

met exactly.
I1. Parametric: e« OneDOF: 0.
X =r|cos®0,sin 0] « Solvefor .




Parametric bead-on-wire (f = mv) For our As before, assumef, pointsin
next trick the normal direction, so
X isnot an independent Tf.=0
. C
variable. .
. . . We can nukef_ by dotting T
- First step—aqget rid of it: into both sides:
7= 1o+ f .
ol oy — ¢ | f=mv (constrained) =T from last dlide
3 ~
x=TO chainrule ._..._.mu._. F+T-1 | pam!
m
TO = f+1 combine . 1 T-f
m 0=——— rearrange.
mT-T
General case Parametric Constraints: Summary
L agr ange dynamics: Not to be confused with: * Generalizations: f= ma, particle systems

[IWJT [a=-3q-[IW]Q

where

J™MIi+JI"MIu-3"Q=0
where

1=
ou

—Likeimplicit case (see notes)
Big advantages.

—Fewer DOF’s

—Constraints are always met
Big disadvantages:

—Hard to formulate constraints

—No easy way to combine constraints
Offical name: Lagrangian dynamics




Hybrid systems Project 1.

[IWJT [ =-du-[IW]Q

where

)

C(q(u))

A bead on awire (implicit)

A double pendulum

A triple pendulum

Simpleinteractivetinkertoys




