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Range image registration
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Range images

For many structured light scanners, the range data 
forms a highly regular pattern known as a range 
image.

The sampling pattern is determined by the specific 
scanner.
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Examples of sampling patterns

4

Range images and range surfaces

Given a range image, we can perform a preliminary 
reconstruction known as a range surface.
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Tessellation threshold

To avoid “prematurely aggressive” reconstruction, a 
tessellation threshold is employed:
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Registration

Any surface reconstruction algorithm strives to use 
all of the detail in the range data.

To preserve this detail, the range data must be 
precisely registered.

Accurate registration may require:

Calibrated scanner positioning

Software optimization

Both
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Registration

Problem: given two overlapping range scans, what is 
the rigid transformation, T, that minimizes the 
distance between them.
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Least squares error

How do we measure this distance?

If we think of surfaces, we can pose a least squares 
problem in integral form, something like:

where p(u,v) and q(u,v) are corresponding points on 
P and Q, respectively.

Alternatively, we can write out a sampled version of 
this:

where pi and qi are corresponding samples on P and 
Q, respectively.

2
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Solution to least squares problem

A derivation due to Horn shows that there is a closed 
form solution to the problem of finding the T that 
minimizes:

This solution is for the class of T’s that permit scale, 
rotation, and translation.  We’ll just allow the latter 
two (rigid body transformations):
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Solution to least squares problem

To solve, we first compute the centroid of each point 
set:

Horn showed that the best rotation satisfies:

In other words:

1. Convert the points into vectors relative to 
their centroids.

2. Find a rotation that makes corresponding 
vectors have dot products as close to 1 as 
possible.
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Solution to least squares problem

To solve for this rotation, you can construct a 3x3 
matrix:

and then solve:

which amounts to solving an eigenvalue problem for 
a 3x3 matrix.

The optimal translation is then just:
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Correspondences: “closest” points

So, we now have a closed form solution for T given 
corresponding pi and qi.

How do we get these correspondences??

One solution is to find the nearest points to qi that lie 
on P.

Note that the resulting pi can lie on faces, edges, and 
vertices of P.

Alternatives include nearest point: 

along the direction of the normal at qi
along a fixed direction
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Iterated Closest Point (ICP)

After finding the best T based on these 
“correspondences,” we will have brought the 
surfaces closer together, but not all the way.

How do we go the rest of the way?  Iterate!

until E is small
Identify nearest points

Compute the optimal T

end until

This procedure, called Iterated Closest Point (ICP), 
was developed by Besl and McKay.

Q: What kinds of practical problems do you think you 
will encounter when aligning two range scans?
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Springs that slow convergence

One shortcoming of the ICP method is slow 
convergence.

We can think of a least squares solution as:

1. Tacking a bunch of springs between points

2. Requiring their rest lengths to be zero

3. Solving for the lowest energy configuration

If many of the points are near each other, but should 
slide past each other, the springs will resist:

Q: how might you speed this up?
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“Sliding” springs

Chen and Medioni proposed an alternate error 
function that does not penalize sliding.

In particular, at each closest point, pi, the normal 
defines a tangent plane:

Signed distance from this plane is simply:

The error function can now be written in terms of 
square distances from planes:
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“Sliding” springs

There is no known closed solution for T in this case, 
but it can be solved quickly in a few linear sub-
iterations.

The algorithm otherwise proceeds as ICP.

Result: faster convergence.

This was the method of choice for the Digital 
Michelangelo Project.
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Error accumulation

Consider a set of N scans around an object. 

With each pairwise registration you get a least 
squares optimal transformation.

Will this transformation bring the range data into 
perfect alignment?

What happens when you come full circle and 
compare scan N-1 to scan 0?
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Global registration

The problem now becomes: find the set of 
transformations that simultaneously minimizes 
distances between range scans.

This is sometimes called the global registration
problem.

One solution is to define a new global error function 
and solve for the best Tj in:

where: 

M is the number of scans

Njk is the number of points in 
correspondence between scans j and k

Tj is the transformation for scan j

pji is the i-th point from the j-th scan

Can initialize with pairwise ICP and then perform a 
large, global, non-linear ICP.

2jkNM M

j ji k ki
j k i

E = −T p T p
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Global registration

For the Digital Michelangelo Project, Kari Pulli 
developed a simpler, faster version of global ICP.

One suggested approach:

Perform pairwise registration.

Save a sub-sampled “best” set of pairwise 
correspondences.

until convergence
Select next scan j

Compute the optimal Tj w.r.t. Ej:

end until

2jkNM
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Global registration

Pulli modifies this to:

keep the original pairwise transforms, Tj k
substitute pki with Tj k pji

The error function at each step is then:
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Non-rigid registration

Calibrating scanners can be extremely difficult.

The DMP scanner was not 100% calibrated.  How to 
compensate?

Solution: fold non-linear scanner parameters into 
some of the registration procedures.

Q: Is there an analagous problem in computer vision?
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