Announcements

Project Update
» Extension: due Friday, April 20
» Create web page with description, results
* Present your project in class (~10min/each) on Friday, April 27

Stereo Reconstruction Pipeline

Steps
+ Calibrate cameras
* Rectify images
» Compute disparity
» Estimate depth




Image Rectification

Image Rectification

Image Reprojection

* reproject image planes onto common
plane parallel to line between optical centers

* a homography (3x3 transform)
applied to both input images
C. Loop and Z. Zhang. Computing Rectifying Homographies

for Stereo Vision. IEEE Conf. Computer Vision and Pattern :
Recognition, 1999. Show VM video




Depth from Disparity

input image (1 of 2) . depth map 3D rendering
[Szeliski & Kang ‘95]
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Disparity-Based Rendering
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Render new views from raw disparity

* S. M. Seitz and C. R. Dyer, View Morphing, Proc.
SIGGRAPH 96, 1996, pp. 21-30.

* L. McMillan and G. Bishop. Plenoptic Modeling: An Image-Based
Rendering System, Proc. of SIGGRAPH 95, 1995, pp. 39-46.




Choosing the Baseline

Large Baseline Small Baseline

What’s the optimal baseline?
* Too small: large depth error
» Too large: difficult search problem

The Effect of Baseline on Depth Estimation

image(
imagel
image?
image3
imaged
image5
image6
image7
image8
image9

]HH_

Figure 2: An example scane. The grid
pattern in the baclground has Baseline b 2Zb 3b 4b 5b 6b Th Eb 9b

ambigmuity of matching.
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Fig. 5. $SD values versus inverse distance: (a) B = b; (b) B = 2b; (c)
B =3b; (d) B = db; (¢) B = 5b; () B = 6b; (2) B = 7h; (h) B = 8b.
The horizontal axis is normalized such that 8bF = 1 Fig. 7. Combining multiple baseline stereo pairs.

Multibaseline Stereo

Basic Approach
* Choose a reference view

» Use your favorite stereo algorithm BUT
> replace two-view SSD with SSD over all baselines

Limitations
* Must choose a reference view (bad)
+ Visibility!

CMU'’s 3D Room Video




Video

©)

Figure 7: The CMU Videc-Rate Sereo
Machine Prototype System: (a) camera head;
(b) processor boards

Epipolar-Plane Images [Bolles 87]

http://www.graphics.lcs.mit.edu/~aisaksen/projects/drlf/epi/

Lesson: Beware of occlusions




The Global Visibility Problem

Which points are visible in which images?
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Goal: Determine transparency, radiance of points in V




Discrete Formulation: Voxel Coloring

Discretized

[}
S
2
o
>
[}
C
o}
O
n

Input Images

(Calibrated)

photo-consistent with images

Goal: Assign RGBA values to voxels in V

Complexity and Computability
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Issues

Theoretical Questions
« Identify class of all photo-consistent scenes

Practical Questions
* How do we compute photo-consistent models?

Voxel Coloring Solutions

1. C=2 (silhouettes)

* Volume intersection [Martin 81, Szeliski 93]

2. C unconstrained, viewpoint constraints
» Voxel coloring algorithm [Seitz & Dyer 97]

3. General Case
» Space carving [Kutulakos & Seitz 98]




Reconstruction from Silhouettes (C = 2)

Binary Images =—p- P

Approach:
» Backproject each silhouette
+ Intersect backprojected volumes

Volume Intersection

Reconstruction Contains the True Scene
« Butis generally not the same

 In the limit (all views) get visual hull
> Complement of all lines that don’t intersect S
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Voxel Algorithm for Volume Intersection

Color voxel black if on silhouette in every image
* O(MN?3), for M images, N3 voxels
« Don't have to search 2\° possible scenes!

Properties of Volume Intersection

Pros
+ Easy to implement, fast
» Accelerated via octrees [Szeliski 1993]

Cons
* No concavities
» Reconstruction is not photo-consistent
» Requires identification of silhouettes
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Voxel Coloring Solutions

1. C=2 (silhouettes)

* Volume intersection [Martin 81, Szeliski 93]

2. C unconstrained, viewpoint constraints
» Voxel coloring algorithm [Seitz & Dyer 97]

3. General Case
» Space carving [Kutulakos & Seitz 98]

Voxel Coloring Approach

Lo

Choose voxel
Project and correlate

\
. Color if consistent I \
(standard deviation of pixel ,
colors below threshold)

Visibility Problem: in which images is each voxel visible?

w N
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Depth Ordering: visit occluders first!

Layers

Scene
Traversal

T 1

Condition: depth order is the same for all input views

What is A View-Independent Depth Order?

A function £ over a scene S and a camera volume C
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Such that
p occludes qfromv onlyif £(p) < f(q)

For example: f = distance from separating plane
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Panoramic Depth Ordering

» Cameras oriented in many different directions
» Planar depth ordering does not apply

3

Panoramic Depth Ordering

f

e

{

Layers radiate outwards from cameras
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Panoramic Layering
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Layers radiate outwards from cameras

Panoramic Layering
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Layers radiate outwards from cameras
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Compatible Camera Configurations

Depth-Order Constraint

« Scene outside convex hull of camera centers
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Inward-Looking Outward-Looking

Calibrated Image Acquisition

Calibrated Turntable

Selected Flower Images
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Voxel Coloring Results (Video)
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Dinosaur Reconstruction Flower Reconstruction
72 K voxels colored 70 K voxels colored
7.6 M voxels tested 7.6 M voxels tested
7 min. to compute 7 min. to compute
on a 250MHz SGI on a 250MHz SGI

Limitations of Depth Ordering

A view-independent depth order may not exist

Need more powerful general-case algorithms
* Unconstrained camera positions
* Unconstrained scene geometry/topology
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Voxel Coloring Solutions

1. C=2 (silhouettes)

* Volume intersection [Martin 81, Szeliski 93]

2. C unconstrained, viewpoint constraints
* Voxel coloring algorithm [Seitz & Dyer 97]

3. General Case
+ Space carving [Kutulakos & Seitz 98]

Space Carving Algorithm
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Space Carving Algorithm

+ Initialize to a volume V containing the true scene
» Choose a voxel on the current surface

* Project to visible input images

» Carve if not photo-consistent

* Repeat until convergence
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Convergence

Consistency Property

» The resulting shape is photo-consistent
> all inconsistent points are removed

Convergence Property

» Carving converges to a non-empty shape
> a point on the true scene is never removed
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What is Computable?

True Scene Photo Hull

The Photo Hull is the UNION of all photo-consistent scenes in V
» |tis a photo-consistent scene reconstruction
» Tightest possible bound on the true scene
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Space Carving Algorithm

The Basic Algorithm is Unwieldy

* Complex update procedure

Alternative: Multi-Pass Plane Sweep
 Efficient, can use texture-mapping hardware
» Converges quickly in practice
« Easy to implement




Multi-Pass Plane Sweep

» Sweep plane in each of 6 principle directions
» Consider cameras on only one side of plane
* Repeat until convergence

LN

Multi-Pass Plane Sweep

» Sweep plane in each of 6 principle directions
» Consider cameras on only one side of plane
* Repeat until convergence
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Multi-Pass Plane Sweep

» Sweep plane in each of 6 principle directions
» Consider cameras on only one side of plane
* Repeat until convergence
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Multi-Pass Plane Sweep

» Sweep plane in each of 6 principle directions
» Consider cameras on only one side of plane
* Repeat until convergence
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Multi-Pass Plane Sweep

» Sweep plane in each of 6 principle directions
» Consider cameras on only one side of plane
* Repeat until convergence
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Multi-Pass Plane Sweep

» Sweep plane in each of 6 principle directions
» Consider cameras on only one side of plane
* Repeat until convergence
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Space Carving Results: African Violet
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Reconstruction Reconstruction

Space Carving Results: Hand

Input Image
(1 of 100)

Views of Recostruction

24



House Walkthrough

’ b
# xa
: : )
¥
h Yy
< -~ >

24 rendered input views from inside and outside

Space Carving Results: House

Input Image Reconstruction
(true scene) 370,000 voxels
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Space Carving Results: House

Input Image Reconstruction
(true scene) 370,000 voxels

Space Carving Results: House

Reconstruction

New View Reconstruction Reconstruction
(true scene) (with new input view)




Other Features

Coarse-to-fine Reconstruction
* Represent scene as octree
« Reconstruct low-res model first, then refine

Hardware-Acceleration
» Use texture-mapping to compute voxel projections
* Process voxels an entire plane at a time

Limitations
* Need to acquire calibrated images
» Restriction to simple radiance models
+ Bias toward maximal (fat) reconstructions
* Transparency not supported

Other Approaches

Level-Set Methods [Faugeras & Keriven 1998]
» Evolve implicit function by solving PDE’s
Probabilistic Voxel Reconstruction [DeBonet & Viola 1999]
» Solve for voxel uncertainty (also transparency)
Transparency and Matting [Szeliski & Golland 1998]
» Compute voxels with alpha-channel
Max Flow/Min Cut [Roy & Cox 1998]
» Graph theoretic formulation
Mesh-Based Stereo [Fua & Leclerc 1995], [Zhang & Seitz 2001]

* Mesh-based but similar consistency formulation

Virtualized Reality [Narayan, Rander, Kanade 1998]
» Perform stereo 3 images at a time, merge results
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Level Set Stereo [Faugeras & Keriven 1998]

Pose Stereo as Energy Minimization
» Firstidea: find best surface S(u,v) to match images
E = [, [, photoconsistency(S(u,v))dudv
» This is a variational minimization problem

> solved by deforming surface infinitesimally
> deformation given by Euler-Lagrange equations

Problem—how to handle case where object is not
a single surface?
» Can use level-set formulation

> represent the object as a function f(x,y,z) whose zero-
set is the object’s surface

> evolve f instead of S
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