CT Reconstruction

Computerized tomography

Computerized tomography (CT) is a method for using
x-ray images to reconstruct a spatially varying density
function.
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First generation CT scanner

Physics of beam attenuation

CT works by collecting x-ray images one slice at a
time.

Consider a parallel beam of x-rays passing through
an object being imaged orthographically:
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An x-ray photon interacts with the material by:

+ absorption
* scatter

Absorbed photons are simply lost.

We will assume that scattered photons are all re-
directed away from the sensor.

Physics of beam attenuation

If we consider a single “ray” passing through, we'll
find that it's intensity drops off as:

Al =—plAx
where g is the linear attenuation coefficient.

We can re-write this as differentials and permit x to
vary along the ray:

dl =—u(x)ldx
If the material is made of a single substance of
varying density, then x(x) can be modeled as

proportional to that density.

Re-arranging:

Integrating:




Physics of beam attenuation

Performing the integration of the left side:
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Equating to the right side:
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In[;"} = —:[,u(x)dx

Raising to an exponent:

la _ exp{— Tu(x)dx}

Solving for detector intensity:

Physics of beam attenuation

If we back up a little bit, we can remove the negative
sign by inverting the argument of the log:

In{%} = j:,u(x)dx

Allowing y to vary:
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In[ ) (y)}— [utxyydx=g(y)

Thus, we can take the detector data, and, using this
log, we can interpret the result as an integral
projection of the attenuation function.
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Such a technique is called an Algebraic
Reconstruction Technique, or ART.

In practice, ART has proven computationally
expensive and sensitive to noise.

Instead, we can use some fancier math to derive an
elegant solution...




The 1D Fourier transform

Recall (from CSE 5577?) that the Fourier transform of a
1D function can be written as:

Spif(x)}= °]‘f(x)exp[—i27rux]dx =F(u)

where u is spatial frequency.

The inverse Fourier transform is simply:

SofFu)}= j F(u)expli2zruxldu =f(x)

Note that an f(x) implies a unique F(u) and vice versa,
so if we know one, we can compute the other:

3
f(x) = F(u)

g1
f(x) « F(u)

The 2D Fourier transform

We can generalize this to 2D:

Splf(x, Y= J. J.f(x,y)exp[—i27r(ux +vy)ldxdy = F(u,v)

where u is spatial frequency in x, and v is the spatial
frequency iny.

Likewise, the 2D inverse Fourier transform is:

RNSTI(TAIES D]' B]‘F(u,v)exp[i27r(ux +vy)ldudv =f(x,y)

Again, given one function, we can uniquely compute
the other.
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Linear transforms of Fourier
domains

We can also write the Fourier transform relation in
terms of vector arguments:

3
f(x) = F(u)

It's easy to show that scaling one domain
corresponds to inverse scaling the other:

In fact, if we replace “a” with a matrix “A”, it is not
hard to show that:

)
flAX) — [AT|F(ATu)

For rotations, this implies:

F(Rx) iHR’THF(R’Tu)z?
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Linear transforms of Fourier
domains

floy) 4 Fu,v)

fixy) Fav)
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Fourier transforms and projections

So, what do Fourier transforms have to do with x-ray
projections?

Let’s change terminology slightly and say
fix,y)=ux,y). We've already noted that:

Flu,v)= I If(x,y)exp[—iZ;r(ux+vy)]dxdy

What happens if we evaluate this at F(0,v)?

F(O,v)= J. 'ff(x,y)exp[—izfr(u -0+vy)ldxdy

= f If(x,y)exp[—iZﬂvy]dxdy

= ?{ B]f(x,y)dx}exp[—iZ;rvy]dy

—oo | —o0

= Ig( y)expl—i2zvyldy

Fourier transforms and projections
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Projection at an angle Projection at an angle
What happens if we project the volume at an angle?
i / _LQ%(’)
=
fixy)
fixy) y ‘19%") i ‘g(‘; Fuy) =F(p.0)
=7
15 16




Fourier projection slice theorem

In other words, if we express F(u, v) in polar
coordinates F(p, 6):

F(p'6)=S1D{gg(r)}=Gg(p)

This result is called the “Fourier projection slice
theorem” or the “central slice theorem.”

Using this theorem, we can reconstruct an object
from its projections by:

1. Populating the Fourier domain with oriented
Fourier lines

2. Taking the inverse Fourier transform

In practice, all of these operations can be performed
in the spatial domain.
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A medical scanner
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