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CT Reconstruction
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Computerized tomography

Computerized tomography (CT) is a method for using 
x-ray images to reconstruct a spatially varying density 
function.

First generation CT scanner
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Physics of beam attenuation

CT works by collecting x-ray images one slice at a 
time.

Consider a parallel beam of x-rays passing through 
an object being imaged orthographically:

An x-ray photon interacts with the material by:

absorption

scatter

Absorbed photons are simply lost.

We will assume that scattered photons are all re-
directed away from the sensor.
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Physics of beam attenuation

If we consider a single “ray” passing through, we’ll 
find that it’s intensity drops off as:

where µ is the linear attenuation coefficient.

We can re-write this as differentials and permit µ to 
vary along the ray:

If the material is made of a single substance of 
varying density, then µ(x) can be modeled as 
proportional to that density.

Re-arranging:

Integrating:
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Physics of beam attenuation

Performing the integration of the left side:

Equating to the right side:

Raising to an exponent:

Solving for detector intensity:

Considering beams that pass through at various y-
positions:
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Physics of beam attenuation

If we back up a little bit, we can remove the negative 
sign by inverting the argument of the log:

Allowing y to vary:

Thus, we can take the detector data, and, using this 
log, we can interpret the result as an integral 
projection of the attenuation function.
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ART

Using projections from multiple angles, you can try 
to solve for the interior distribution.

One approach is essentially to create a large linear 
system and solve iteratively.

Such a technique is called an Algebraic 
Reconstruction Technique, or ART.
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ART

For example:

In practice, ART has proven computationally 
expensive and sensitive to noise.

Instead, we can use some fancier math to derive an 
elegant solution…
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The 1D Fourier transform

Recall (from CSE 557?) that the Fourier transform of a 
1D function can be written as:

where u is spatial frequency.

The inverse Fourier transform is simply:

Note that an f(x) implies a unique F(u) and vice versa, 
so if we know one, we can compute the other:
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The 2D Fourier transform

We can generalize this to 2D:

where u is spatial frequency in x, and v is the spatial 
frequency in y.

Likewise, the 2D inverse Fourier transform is:

Again, given one function, we can uniquely compute 
the other.
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Linear transforms of Fourier 
domains

We can also write the Fourier transform relation in 
terms of vector arguments:

It’s easy to show that scaling one domain 
corresponds to inverse scaling the other:

In fact, if we replace “a” with a matrix “A”, it is not 
hard to show that:

For rotations, this implies:
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Linear transforms of Fourier 
domains
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Fourier transforms and projections

So, what do Fourier transforms have to do with x-ray 
projections?

Let’s change terminology slightly and say 
f(x,y)=µ(x,y).  We’ve already noted that:

What happens if we evaluate this at F(0,v)?
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Fourier transforms and projections
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Projection at an angle

What happens if we project the volume at an angle?
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Projection at an angle
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Fourier projection slice theorem

In other words, if we express F(u, v) in polar 
coordinates F(ρ, θ):

This result is called the “Fourier projection slice 
theorem” or the “central slice theorem.”

Using this theorem, we can reconstruct an object 
from its projections by:

1. Populating the Fourier domain with oriented 
Fourier lines

2. Taking the inverse Fourier transform

In practice, all of these operations  can be performed 
in the spatial domain.
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Second generation scanner
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Third generation scanner
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Fourth generation scanner
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A medical scanner
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