Modeling aspects of 3d Photography

1. Outline

Given:
Dense triangular mesh M, possibly with colored vertices.

Will talk about:

a. Mesh simplification and multiresolution analysis of meshes
b. Mesh parameterization
c. Conversion to other surface representations

a. Mesh simplification and multiresolution analysis of meshes

Decompose original mesh M into
• simple base mesh M_0
• series of correction terms of decreasing magnitude

By successively adding correction terms, can generate sequence of meshes M_0, M_1, M_2, ... approaching M.
Motivation

- Compression
- Progressive transmission
- Level-of-detail control
- Multiresolution editing

Full resolution: 70K faces
LoD control: 38K - 4.5K - 1.9K faces

(b) Mesh parameterization

Establish correspondence between points on original mesh and points on the meshes M_0, M_1, \ldots.

Motivation

Texture mapping --- can cover up lack of geometric detail
c. Conversion to other surface representations

Approximate mesh by subdivision surface, spline patches,

Mesh (25K vertices) B-spline surface 27 x 36 control points Mesh Subdivision surface

Motivation

• Parsimonious representation of smooth surfaces
• Use of models in CAD systems

2. Mesh simplification and multiresolution analysis of meshes

2.1 Representation of meshes

A mesh is a pair $M = (K, V)$:

• The simplicial complex K determines the connectivity of the vertices, edges, and faces of the surface.
• The vertex positions $V = (v_1, \ldots, v_m)$ determine the geometric shape of the surface in \mathbb{R}^3.

Definition of K:

• K is a collection of subsets of $\{1, \ldots, m\}$
• $\{1, \ldots, m\} \in K$
• $\{i, j\} \in K$ iff v_i and v_j are connected by edge in S.
• $\{i, j, k\} \in K$ iff v_i, v_j, v_k are vertices of a face of S
Define topological realization \([K] \subset R^m\):
- mesh in \(R^m\)
- obtained by identifying 1-simplices \(\{1\}, \ldots, \{m\}\) with \(\xi_1, \ldots, \xi_m\).

Define linear map \(\Phi_V : R^m \to R^3\) by
\[
\Phi_V(\xi_i) = \xi_i, \quad i = 1, \ldots, m.
\]
For every point \(y \in S\) there is unique point \(\bar{y} \in |K|\) with \(\Phi_V(\bar{y}) = y\).

\(\bar{y}\): barycentric coordinates of \(y\)

Note: \(\bar{y}\) has at most 3 non-zero components.

2.2 Fitting a mesh to a set of points

Given:
- Set of points \(\xi_1, \ldots, \xi_n \in R^3\)
- Initial mesh \(M = (K, V)\)

Goal:
Change vertex positions \(V = \{\xi_1, \ldots, \xi_n\}\) to improve approximation of points by mesh.

Approach:
- Define energy function \(E(V)\) that measures distance of mesh from points.
- Minimize \(E(V)\) over vertex positions using numerical optimization.
Definition of energy

\[E(V) = E_{det}(V) + E_{spring}(V) \]
\[= \sum_{i=1}^{n} d^2(p_i, \Phi_V([K])) + \sum_{\{i,j\} \in K} \kappa \|v_i - v_j\|^2 \]

Motivation for spring energy \(E_{spring} \):
- guarantees existence of minimum
- prevents parts of the surface from wandering away from the data
- tends to prevent self-intersection

Energy minimization

Find vertices \(V \) to minimize

\[E(V) = \sum_{i=1}^{n} d^2(p_i, \Phi_V([K])) + \sum_{\{i,j\} \in K} \kappa \|v_i - v_j\|^2 \]

Note: \(d^2(p_i, \Phi_V([K])) \) is itself solution of optimization problem:

\[d^2(p_i, \Phi_V([K])) = \min_{b_i \in [K]} \|p_i - \Phi_V(b_i)\|^2 \]
\[= \min_{b_i \in [K]} \|p_i - \sum_{j=1}^{m} b_{ij} \sigma_j\|^2 \]

Restate fitting problem: Minimize new objective function

\[E(V, B) = \sum_{i=1}^{n} \|v_i - \Phi_V(b_i)\|^2 + \sum_{\{i,j\} \in K} \kappa \|v_i - v_j\|^2 \]

over vertex positions \(v_1, \ldots, v_m \) and barycentric coordinates \(b_1, \ldots, b_m \).
Optimization method

Want to minimize

\[E(V, B) = \sum_{i=1}^{n} ||x_i - \Phi_V(b_i)||^2 + \sum_{(i,j) \in K} \kappa ||x_j - x_i||^2 \]

over vertex positions \(x_1, \ldots, x_n\) and barycentric coordinates \(b_1, \ldots, b_n\).

Suggests alternating minimization scheme:

- For fixed \(x\)'s, can find optimal \(b\)'s by projection
- For fixed \(b\)'s, can find optimal \(x\)'s by solving 3 linear LS problems

Note:

- can use continuity between iterations in projection step
- LS problems are large but sparse — use conjugate gradients

5/9/2001

2.3 Basics of mesh simplification

Given:

Complex mesh \(M_{orig}\), possibly with associated information — face colors, face textures, normals at the vertices (or at the corners), sharp edges, etc.

Goal:

Generate sequence of simpler meshes \(M_0, M_1, M_2, \ldots\) approximating \(M_{orig}\).

Important characteristics

- Are the simplified meshes surfaces (no singularities)?
- Can the topological type change?
- Efficient "undo"?
- Smooth "geomorphing" between approximations?
- Texture mapping?

5/9/2001
Outline for a class of procedures

Define elementary simplification operation

- collapse an edge
- remove a vertex and re-triangulate — more general than edge collapse
- merge two vertices, not necessarily connected by an edge

5/9/2001
2.4 Progressive meshes (Hoppe 1997)

Given:
Complex mesh M_{orig}, with associated attributes:

- discrete attributes – colors – for faces
- scalar attributes – normals – for corners = (vertex, face) pairs

Goal:
Generate sequence of simpler meshes M_0, M_1, M_2, \ldots approximating M_{orig}.

Characteristics

- Are the simplified meshes surfaces (no singularities)? Yes
- Can the topological type change? No
- Efficient "undo"? Yes
- Smooth "geomorphing" between approximations? Yes
- Texture mapping? No (at the time)

Sketch of simplification method

Elementary simplification operation: edge collapse

Error metric (assuming no attributes):
Sample points z_i, \ldots, z_n from M_{orig} (vertices z_1, \ldots, z_n + possibly additional points.)

Measure error of a mesh $M = (K, V)$ by

$$E(M) = \sum_i d^2(z_i, M) + \kappa \sum_{(i,j) \in K} \|z_i - z_j\|^2$$

Simplification step:

- For each (legally collapsible) edge of current mesh $M = (K, V)$
 - Collapse edge: $K \rightarrow K'$
 - Find vertex positions V' minimizing $E(M')$
- Collapse edge for which $E(M')$ is smallest
Computational shortcuts:

- Collapsing an edge will not change optimal positions of vertices far away from edge ⇒
 - Only optimize over position of newly generated vertex
 - Only use those points z_i that project onto the disc surrounding the edge
- Initially generate priority queue of edges sorted according to increase in error incurred by collapse
 - Collapse edge in front of queue
 - Update errors for edges in neighborhood of collapsed edge

Dealing with attributes

Quite complex. Add terms to error metric that penalize changes in topology of discontinuity curves. For details, see paper.

Key insights

Can store information for vertex split that undoes edge collapse:

- original positions of vertices that were merged
- incident edges of original vertices
- attributes of corners and faces

Can represent original mesh by simplest (base) mesh and vertex splits.

Allows progressive transmission and selective refinement.

Can smoothly morph between meshes (obvious for consecutive meshes in sequence)
Figure 5: The PM representation of an arbitrary mesh M captures a continuous-resolution family of approximating meshes $M^0, \ldots, M^0 = M$.

Figure 6: Example of a geormorph M^0 in between $M^0(0) = M^{100}$ (with 50 faces) and $M^0(1) = M^{100}$ (with 1,000 faces).

Figure 7: Example of minimizing E_{edge}: simplification of a mesh with trivial geometry (a square) and complex scalar attribute field. (M is a mesh with regular connectivity whose vertex colors correspond to the pixels of an image.)

Figure 11: Simplification of a radiosity solution, left: original mesh (150,985 faces); right: simplified mesh (10,000 faces).
2.5 Mesh simplification using quadratic error metrics

Elementary simplification operation: edge collapse

Error metric, assuming no attributes (Garland and Heckbert 97):

Associate each vertex with a collection \mathcal{L} of planes defined by its incident faces.

Define distance between a point x and a collection of planes \mathcal{L} by

$$d^2(x, \mathcal{L}) = \sum_{L \in \mathcal{L}} d^2(x, L)$$

Define loss $E(\{i, j\})$ incurred when collapsing edge $\{i, j\}$:

$$E(\{i, j\}) = \min_{x} d^2(x, \mathcal{L}_i \cup \mathcal{L}_j)$$

Simplification step

- Collapse edge k, m with minimum loss and remove degenerate faces
- Associate vertex k with the collection of planes $\mathcal{L}_k^{\text{new}} = \mathcal{L}_k^{\text{old}} \cup \mathcal{L}_m^{\text{old}}$
- Define new vertex position $x_k^{\text{new}} = \arg\min_x d^2(x, \mathcal{L}_k^{\text{new}})$

5/9/2001

Computing distances between points and planes

Let L be the plane defined implicitly by $L = \{x \mid x \cdot n + d = 0\}$

with $\|n\| = 1$.

Then n is normal to the plane.

The projection of a point x onto the plane is of the form $x + c n$, where c has to satisfy the condition

$$\langle x + c n \rangle \cdot n + d = 0$$

or

$$c = -(x \cdot n + d)$$

Therefore the squared distance between x and L is

$$d^2(x, L) = \langle x \rangle^2 + 2d \langle x \rangle \cdot n + d^2$$

$$= \langle n n^T \rangle x + 2d \langle x \rangle \cdot n + d^2$$

For collection of planes $\mathcal{L} = \{L_1, \ldots, L_m\}$ we have

$$d^2(x, \mathcal{L}) = x^T \left(\sum_i (n_i n_i^T) \right) x + 2 \left(\langle x \rangle \sum_i n_i \rangle + \sum_i d_i$$

5/9/2001
Recall:

\[d^2(\mathbf{g}, \mathcal{L}) = \mathbf{g}^T \left(\sum_i \left(n_i n_i^T \right) \right) \mathbf{g} + 2 \left(\mathbf{g} \cdot \sum_i d_i n_i \right) + \sum_i d_i^2 \]

Therefore:

- Easy to find \(\mathbf{g} \) minimizing \(d^2(\mathbf{g}, \mathcal{L}) \) (quadratic function)
- No need to remember all normals and offsets associated with a vertex; enough to keep \(\sum_i n_i n_i^T \), \(\sum_i d_i n_i \), and \(\sum_i d_i^2 \)

Note: Iso-surfaces of \(d^2(\mathbf{g}, \mathcal{L}) \) are ellipses.
Lengths and directions of principal axes are related to mesh curvature.

Note: Quadratic form can be degenerate \(\Rightarrow \arg \min_{\mathbf{g}} d^2(\mathbf{g}, \mathcal{L}) \) does not exist.
In this case pick the best of the two original vertex positions for the new vertex.

5/9/2001

Results

Figure 4: A sequence of approximations generated using our algorithm. The original model on the left has 5,804 faces. The approximations to the right have 996, 512, 256, and 64 faces respectively. Note that features such as horns and hooves continue to exist through many simplifications. Only at extremely low levels of detail do they begin to disappear.

5/9/2001
Incorporating surface attributes (Garland and Heckbert 98)

- Associate each vertex with a vector $v = (p, a) \in \mathbb{R}^{n+m}$.
 - p: geometric position;
 - a: attributes.
- Mesh now is a 2d surface in \mathbb{R}^n. Everything generalizes in the obvious way.

Dealing with boundaries

- For each boundary edge, generate boundary plane orthogonal to incident face.
- Add boundary plane to plane collections associated with incident vertices.
Figure 3: (a) Original cylinder. (b) No constraints. (c) Boundary constraints.

5/9/2001

Figure 7: At left: a curved surface (18,070 faces) with color at each vertex. At right: 1,000 face approximation. Notice that mesh edges follow the color contours.

5/9/2001

Figure 8: Simplifying geometry only. A very complex model of 1,085,634 faces (a) is simplified to 20,000 faces (b–c) and 1,000 faces (d–e).

5/9/2001

Figure 9: Simplifying geometry & color: A Gouraud-shaded surface of 73,528 faces (a) is reduced to 20,000 faces (b) and 3,000 faces (c–d).
Hoppe’s quadratic metric (Hoppe 99)

Recap of G & H:
Each vertex i of original mesh M is associated with quadratic function Q_i,

$$Q_i(x) = d^2(x, L_i) = \sum_{k \in \mathcal{L}_i} d^2(x, L_k)$$

where \mathcal{L}_i is the collection of planes defined by the faces incident to vertex i.

Note: If there are m vertex attributes, then L_i will be a plane in \mathbb{R}^{d+m}

Loss $E(\{i, j\})$ incurred when collapsing edge $\{i, j\}$ is defined as

$$E(\{i, j\}) = \min_x \{Q_i(x) + Q_j(x)\}$$

Algorithm:
- Collapse edge $\{k, l\}$ with minimum loss
- $Q_k^{ru} = Q_k^{rd} + Q_l^{rd}$
- $x_k^{ru} = \arg\min_x Q_k^{ru}(x)$

5/9/2001

Hoppe changes definition of $Q_i(x)$.

Let $f = \{i, j, k\}$ be a face incident on vertex i.

Will define quadratic function Q_f^i associated with vertex i and face f.

Let L be the plane in \mathbb{R}^3 defined by the geometric positions p_i, p_j, p_k of the vertices.

Let $h(x)$ be the linear function on L defined by $h(p_i) = s_i$, $h(p_j) = s_j$, $h(p_k) = s_k$.

Define

$$Q_f^i(x) = Q_f^i((p, s)) = d^2(p, L) + \|x - h(P_L(p))\|^2$$

where $P_L(p)$ = projection of p on plane L.

So: $Q_f^i((p, s)) =$

squared distance of geometric position p to plane L defined by face f +
squared difference between attribute vector x and its predicted value at $P_L(p)$.

Quadratic function $Q_i(x) = \sum_f Q_f^i(x)$, where the sum is over the faces incident on vertex i.
Additional enhancements suggested in Hoppe (99)

Deal with attribute discontinuities by associating attributes with (vertex, face) pairs (wedges).

Memoriless simplification: At each step, define quadratic functions Q_i based on current mesh, not on original mesh.

Surprise: Can work better.

![Image 1](image1.png)

Figure 6: Illustration of standard QEM and memoriless QEM simplification. The dashed ovals symbolize the shapes of the quadratic functions Q_i: (a) in the standard scheme they are computed once in a preprocessing and subsequently summed during simplification; (b) in the memoriless scheme they are computed using the mesh-simplified so far.

5/9/2001 31

![Image 2](image2.png)

Figure 3: Results of simplifying a vertex-colored 200 x 200 mesh down to 1,000 faces using the previous QEM [7] and using our new QEM. Mesh edges are rendered on the left half of each image. Weights relating color to geometric accuracy are set to 1.

(a) Original mesh (79,202 faces) (b) Simplified using Q from [7] (c) Simplified using our new Q

5/9/2001 32

![Image 3](image3.png)

Figure 8: Simplification of a vertex-colored mesh of 133,333 faces down to 1,500 faces.

(a) Original mesh (b) Simplified using [7] (c) Simplified using our scheme
Figure 13: Simplification of a mesh of 920,000 faces down to 10,000 faces. For the geometric simplification in (b), normals are simply carried through. In (c) we optimize both geometry and normals, using $\epsilon_n = 0.02$ for normals.