

A taxonomy of shape capture

Coordinate measuring machine (CMM)

Principle:

Typically use X, Y, Z translation assembly with high precision displacement encoders. The probe may have a rotational degree of freedom to measure point of contact.

Working volume:

• 1-5 meters

Accuracy:

• 10 microns in 3 meter => 1 part in 300,000!

Notes:

- Expensive
- Slow

10

Jointed arms

Principle:

A series of rotating joints provide freedom of movement. A sequence of joint-to-joint transformations provide position and orientation of stylus.

Working volume (all stats for FaroArm Silver series):

• 2.4 meters

Accuracy (2 σ):

• 0.08mm or 1 part in 30,000

Notes:

- Much less expensive than CMM
- Slow

Magnetic trackers

Principle:

Magnetic fields are generated by transmitters. A sensor containing a set of orthogonal coils determines orientation and position based on relative and absolute strengths of induced currents.

Working volume (stats for Polhemus FastTrak):

• 3-10 meters

Accuracy:

 0.75 mm and 0.15 degrees => ~1 part in 5000 positional accuracy

Notes:

- Wireless versions for motion tracking
- Sensitivity to metals and magnetic sources (e.g., monitors)

9

Industrial CT

Principle:

A set of full-surround, parallel-slice X-rays are taken as an object translates perpendicular to the slicing direction. After some fun math, the result is a volumetric density function, $\rho(\mathbf{x})$.

Surface can be extracted as a level set (a.k.a., isosurface) for some density value, ρ_{Ω} :

$$\rho(\mathbf{x}) = \rho_o$$
 or $F(\mathbf{x}) = \rho(\mathbf{x}) - \rho_o = 0$

Working volume:

• 0.2-2 meters

Accuracy:

• 0.25mm voxel spacing over 0.2 meters

Notes:

- Acquires internal cavities
- Expensive
- Hazardous radiation
- Accuracy varies with spatial variation of materials

13

Isosurface extraction

15

Isocontour extraction

14

Isosurface extraction in practice

Q: Can you think of ambiguous cases that might cause problems?

Q: How could you overcome these problems?

Q: Is there a bound on the size or aspect ratio of triangles generated?

Q: If the surface were a single single connected component, how might you extract the surface efficiently?

Imaging radar: Amplitude Modulation

The current to a laser diode is driven at frequency:

 $f_{AM} = \frac{c}{\lambda_{AM}}$

The phase difference between incoming and outgoing signals, $\Delta \phi$, gives the range.

Imaging radar: Amplitude Modulation

Solving for the range:

 $2r = \frac{\Delta \varphi}{2\pi} \lambda_{AM} + n\lambda_{AM}$

or:

$$r = \frac{\Delta \varphi}{4\pi} \lambda_{AM} + \frac{n\lambda_{AM}}{2}$$

Q: What kind of range ambiguity is there?

Q: How can it be overcome?

25

Optical triangulation

A beam of light strikes the surface, and some of the light bounces toward an off-axis sensor.

The center of the imaged reflection is triangulated against the laser line of sight.

The Scheimpflug condition

A lens images a plane to a plane. If the object plane is tilted, then so is the image plane.

The image tilt is related to object tilt through the Scheimpflug condition:

$$\tan \alpha = \frac{\tan \theta}{M}$$

Where *M* is the on-axis magnification.

26

Triangulation angle

When designing an optical triangulation, we want:

- Small triangulation angle
- Uniform resolution

These requirements are at odds with each other.

Scanning: move illuminant

A scene can be scanned by sweeping the illuminant.

Problems:

- Loss of resolution due to defocus
- Large variation in field of view
- Large variation in resolution

29

Scanning: move whole unit

Can instead move the laser and camera together, e.g., by translating or rotating a scanning unit.

Synchronized scanning

A novel design was created and patented at the NRC of Canada [Rioux'87].

Basic idea: sweep the laser and sensor simultaneously.

After unfolding the optics

Triangulation in 3D

Can extend into 3D by spreading the light beam into a plane:

Working volume (Cyberware MS3030):

• 30 cm

Triangulation angle:

• 30 degrees

Accuracy:

• 0.3 mm => one part in 1000

Speed:

• 15,000 pts/sec

33

Triangulation in 3D

Can also extend into 3D with a nodding mirror:

Working volume (Rioux scanner):

• 8 cm

Triangulation angle:

~15 degrees

Accuracy:

• 50 microns => one part in 1500

Speed:

• 10,000 pts/sec

34

Errors in optical triangulation

Finding the center of the imaged pulse is tricky.

If the surface exhibits variations in shape or reflectance, then laser width limits accuracy.

Spacetime analysis Spacetime analysis: results A solution to this problem for scanning systems is Reflectance correction spacetime analysis [Curless 95]: Reflectance ctanc Surface $(\mathbf{x}_{c}, \mathbf{z}_{c})$ Reflectance card Traditional analysis Spacetime analysis $t_2 t_c$ t_1 t₃ t_4 Edge curl reduction t_1 t2 A ö Illuminant Two thin strips Traditional analysis Spacetime analysis Improved shape extraction HAP Chi to Rich SHAPE Shape ribbon Traditional analysis Spacetime analysis 37 38

Multi-spot and multi-stripe triangulation

For faster acquisition, some scanners use multiple spots or stripes.

Trade off depth-of-field for speed.

Problem: ambiguity.

Q: How can we address this ambiguity?

"One shot" active triangulation

One approach is to look at the whole 2D image and borrow information from adjacent scanlines.

Proesmans96 developed such an approach, the basis for Eyetronics's product.

Quadrature moire

We need to "demodulate" to get phase. Multiply by a sinusoid of same frequency:

$$\begin{split} I(x, y) \cos[2\pi fx] &= a(x, y) \cos[2\pi fx + \phi(x, y)] \cos[2\pi fx] \\ &= \frac{1}{2} a(x, y) \{ \cos[\phi(x, y)] + \cos[4\pi fx + \phi(x, y)] \} \end{split}$$

If a(x,y) and $\phi(x,y)$ are slowing varying, then we can filter out the high frequencies with a low-pass filter:

 $M_{1}(x, y) = LPF\{I(x, y)\cos[2\pi fx]\} = \frac{1}{2}a(x, y)\cos[\phi(x, y)]$

Next, multiply by a phase shifted sinusoid:

 $I(x, y)\sin[2\pi fx] = a(x, y)\cos[2\pi fx + \phi(x, y)]\cos[2\pi fx + \pi/2]$ = $\frac{1}{2}a(x, y)\{\sin[\phi(x, y)] - \sin[4\pi fx + \phi(x, y)]\}$

Filtering again:

$$M_{2}(x, y) = LPF \{ I(x, y) \sin[2\pi fx] \} = \frac{1}{2} a(x, y) \sin[\phi(x, y)]$$

45

Shadow moire

Shadow moire:

- Place a grating (e.g., stripes on a transparency) near the surface.
- Illuminate with a lamp.
- Instant moire!

Shadow moire

Filtered image

47

Quadrature moire

Thus, we have:

$$\tan\phi(x,y) = M_2(x,y)/M_1(x,y)$$

and we can solve for the phase (and thus the depth).

Q: What assumptions does this technique make about the surface?

46

Active stereo

Passive stereo methods match features observed by two cameras and triangulate.

Active stereo simplifies feature-finding with structured light.

Problem: ambiguity.

Active multi-baseline stereo

Using multiple cameras reduces likelihood of false matches.

Depth from defocus

Depth of field for large apertures will cause the image of a point to blur.

The amount of blur indicates distance to the point.

49

Depth from defocus

Problem: defocus ambiguity.

Depth from defocus

Solution: two sensor planes.

Problem: Does not work for objects without texture.

50

Active depth from defocus

Solution: project structured lighting onto surface.

[Nayar 95] demonstrates a real-time system utilizing telecentric optics.

Bibliography

Besl, P. Advances in Machine Vision. "Chapter 1: Active optical range imaging sensors," pp. 1-63, Springer-Verlag, 1989.

Curless, B. and Levoy, M., "Better optical triangulation through spacetime analysis." In Proceedings of IEEE International Conference on Computer Vision, Cambridge, MA, USA, 20-23 June 1995, pp. 987-994.

Nayar, S.K., Watanabe, M., and Noguchi, M. "Real-time focus range sensor", Fifth International Conference on Computer Vision (1995), pp. 995-1001.

Proesmans, M. and Van Gool, L., "A sensor that extracts both 3D shape and surface texture," Proceedings of the 1996 IEEE/SICE/RSJ International Conference on Multisensor Fusion and Integration for Intelligent Systems, pp. 485-492.

Rioux, M., Bechthold, G., Taylor, D., and Duggan, M. "Design of a large depth of view three-dimensional camera for robot vision," Optical Engineering (1987), vol. 26, no. 12, pp. 1245-1250.