Project 2:
Inverse Kinematics for Motion Capture

Physics Based Animation
CSE 558, Spring 2000

Zoran Popow”

Out: April 20, 2000
Due: Tuesday, May 9, 2000

1 Problem definition

In this assignment you will implement a differential inverse kinematics solver for the specific purpose of computing
joint angles from intermittent motion capture data. Your challenge is to be able to compute the joint angles within
the satisfactory accuracy, as fast as possible. At the same time, the resulting animation should not have any 'popping’
artifact due to the disappearance of the markers at various times.

On the input you will have a motion capture data file. The result of your computation should be time-varying joint
angles for you character. When displaying the final animation, in addition to displaying the character, you should also
show the markers and their violations. The output should also measure the aggregate distance between the marker
trajectories and their corresponding body points throughout the entire animation. You should be able to measure the
speed of your IK code.

2 Implementation

The problem implementation is intentionally open-ended. You can choose to setup the problem either as a least-
squares fit, or as a standard Lagrangian formulation, or as anything else you might think of. The main goal is to do it
fast, without sacrificing accuracy, and to gracefully deal with incomplete data.

No matter which method you choose, you will need to compute the partial derivatives of any point on the body
efficiently, which involves differentiating through transformation paths of the hierarchy. You will also need an efficient
sparse linear equation solver. | suggest LSQR or conjugate gradient.

3 Motion capture data file format

As an input to your code you should use tiep3.cmdile. The files in the cme format have the following first line:
frames = 960 markers = 26 Hz = 120

where frames is the number of captured time samples, markers is the total number of markers on the body, and
Hz is the frequency of the motion capture. Therefore, the above motion capture data c86idit) seconds of
trajectories for 26 markers. The rest of the file contginemes x markers lines each containing 3 coordinates for

a specific marker. First, there are 26 lines containing the coordinates for 26 markers at frame 1, followed by 26 lines
with coordinates of 26 markers at frame 2, etc. If a position of a specific marker is unknown at a given frame it’s
coordinates will be given as

0.0 0.0 0.0

The motion capture file you are given is not clean, so there are many instances of unknown marker positions.



@ Hinge Joint

@ Ball Joint

abdomen

foot

Figure 1: DOFs for the human character representation.

4 Character dimensions and marker placement

Ideally, you should be able to automatically infer the character’s dimensions, kinematic properties, and marker place-
ments. Since this is a hard problem you're allowed to look at human.cc file for help on the dimensions, marker
placements, relative weights of different body parts, etc. This source file builds a transformation hierarchy shown in
Figurel. | strongly suggest that you use the same hierarchy, and the same number of DOFs for the purposes of fair
evaluation of the performance. You should implement ball joints either as 3 Euler angles or as quaternions.

5 Solver Interface

You best bet is to never actually build any matrices. Keep only the structures which will enable you to efficiently
computeAv andvT A for a given vecton. Your sparse linear solver should need only these two functions to solve
Ax = b. The termination criterion for you iterative solver should measure the amount of progress made at each step,
and stop when little or no progress can be made. If you simply bound the number of solver iterations, you will have
no guarantees of convergence, and most likely your accuracy will suffer.

6 Evaluation

You should be able to measure the frequency of your updates for each time frame of data. Be sure that you can turn
the display off, so that you get this measurement independent of the cost to display the animation.

You accuracy measurement should be a sum of the marker violations for each time frame. At each frame, the
violation is measured as a sum of distances between marker positions and the corresponding body points.

Every time a marker appears or disappears there is a perceptible discontinuity in the joint angle functions. This
discontinuity produces an unsightly popping behavior. You should figure out a way to alleviate this problem. A
successful solution would not contain any perceptible “pops” in the final animation.

7 Experiments

As always, there are numerous optional ways to extend the standard framework of this problem:

e Compute the mass matrix, or just the diagonal elements of the mass matrix in order to account for the different
scales of various DOFs.



e Given the kinematics of the character, compute the best possible marker body positions. Don'’t worry about the
speed here, it's considered a pre-processing step.

e Compute the kinematic dimensions and marker location automatically from the motion capture data, and the
roughly estimated locations of the marker body positions.

e Could you improve the quality of your solution if you allowed yourself a lookaheadfoimes? That is, you
would compute the IK solution for framg knowing the result for all previous frames as well as the frames
fir1,- -, firn? IMmplement a realtime IK implementation that would use this intrinsic lag to better handle the
popping behavior.

e What if you had the full knowledge of all frames in the animation? Implement an IK solution that would solve
this off-line version of the problem.

e Use the mass information for each body part to produce a more natural solution for character movementin light
of missing marker data.



