
Physically Based Animation
CSE 558 Spring 2000

Zoran Popovi´c
Project 1: Tinkertoys — Constrained particle system

Out: April 6, 2000
Due: Thursday, April 20

In this assignment, you will be simulating particles in the plane, subject to two
types of constraints. You will need to implement at least one constraint of the form
C(px; py) = 0: one that keeps the particlep on a circle, and one constraint of the form
C(px; py; qx; qy) = 0: one that keeps the particlesp andq at a fixed distanced apart
from each other.

Your program should draw the particles as they move, as well as drawing the curve
the particle is supposed to stay on for each constraint of the typeC(px; py) = 0 and a
line between all particles with a distant constraint. You should be able to use the mouse
to pull on the particle, and you will also want gravity and some viscous drag.

1 Single particle constraint

The constraint is a circle:C(px; py) = p2x + p2y � d2, whered is the radius. To draw
the circle on the screen, you’ll need the parametric form[x = r cos(t); y = r sin(t)].
Take steps int, from 0 to 2� , calculate[x; y], and draw a line from the previous point
to the new one.

The constraint becomes singular at the origin (the derivatives go away.) Don’t
initialize your particle at the origin! If you’re compulsive, you can put a divide-by-zero
test in your code.

2 Multi-particle constraints

You’ll implement all constraints using Lagrange multipliers, regardless of the number
of particles that they affect. Rather than hand-coding the whole system, you’ll build the
constraint matrix on the fly by allowing each constraint to make its own contribution to
the globalJ and _J matrices.

We talked about sparse matrices in class, but you won’t need to use them for the as-
signment. The web page has a pointer to the C code which does the basic vector/matrix
manipulations you need, including solving the linear system.

You should implement distance constraints as little structures, analogous to a struc-
ture that represents a spring in the particle systems. The structure should point to
the pair of particles it influences, and should also point to the three numerical func-
tions that define its behavior: One that computes the value of the constraint function
C = kp1 � p2k

2 � d2, one that stuffs the derivatives@C
@p1

and @C
@p2

into the globalJ

matrix, and another that stuffs their time derivatives into the global_J matrix.
In order to build the global matrices and vectors, the constraints need to know

where to put their derivatives. This is a simple matter of indexing: number all your

1



constraints, and all your particles. The index of thei-th constraint is justi, and the
indices ofpj (j-th particle) are2j and2j+1, for thex andy components respectively.
So, e.g. the derivative of constraintCi with respect to they component of particlepj
goes into elementi; 2j + 1 of the matrix.

You can in principle build arbitrary ”tinkertoy” structures interactively. However,
you’re not required you to do any interactive construction. You can read a model in
from a file, or just wire it into the code. If the latter, do at least the ”triangle with a
tail”.

3 Mouse interaction

To make your simulations interactive, implement a mouse-spring as follows: each time
the mouse button is pressed, find the particle closest to the mouse at that moment.
Apply an attractive spring force (damped, with zero rest-length) between that particle
and the mouse until the button is released. Let the ”mouse force”FM be computed by
FM = km(Mx � px;My � py) with km > 0. In order for your simulation not to get
out of control, you’ll want to add a damping forceFd of the formFd = �kdv where
kd > 0, so that the total forceF is F = FM + FD .

In order to keep things on the screen, you’ll want to have at least one particle of the
constrained structure fixed to lie on a circle constraint.

You should also be able to turn gravity forces on/off in your system.

2



4 Experiments

In class, we discussed a number of variations on the constraint problem, and we want
you to be able to try them out:

� Penalty method vs. constraint force. Is the penalty method as losing as we said it
is? Try to find out. Can you make your penalty-based simulation fast, accurate,
and stable all at the same time?

� First order vs. second order. Try simulating a particle governed byf = mv, as
well as a real newtonianf = ma particle. (Note: we said you want viscous drag,
but only in thef = ma case. Velocity-dependent forces don’t make any sense
in a first-order world!)

� Constraint feedback on/off (Doesn’t apply to the penalty method). If you just
solve for _C = 0 or �C = 0, the particle will drift off the curve, especially at large
step sizes. Play with this enough to convince yourself that solving for_C = �� �C,
or �C = �� �C + � _C really prevents drift. Play with the feedback constants.

� Time varying vs. stationary constraints. Try making the radius of your circular
wire vary sinusoidally over time (e.g.r = r0 + a sin(kt)). Be sure the radius
doesn’t go negative! Pickk to make the frequency reasonable relative to your
step size. See what happens if you forget to include the direct time derivative
term in the constraint force calculation.

� Make the distanced in the distance constraint time varying.

� If you team has 3 people, or if you want to learn how it’s really done, or if
you just want the general warm and fuzzy feeling that you solved the problem
in a righteous way implement the sparse matrix representation ofJ and _J and
use the conjugate gradient method to solve for the� vector. I suggest using a
good vector library such as VL. You’ll find the pointer to the VL source on the
project web page. The web page also contains pointers to the short and long
descriptions for the conjugate gradient method. Don’t be detracted by a fancy
name — the basic conjugate gradient method is extremely simple to implement.
This implementation enables interactive speeds for extremely large constrained
particle systems.

� Add additional types of constraints to your system. The formulation and the
implementation should be flexible enough to handle any algebraic constraint.

3


