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Abstract
This paper describes a technique to evaluate Loop subdivision surfaces at arbitrary parame-

ter values. The method is a straightforward extension of our evaluation work for Catmull-Clark
surfaces. The same ideas are applied here, with the differences being in the details only.

1 Introduction

Triangular meshes arise in many applications, such as solid modelling and finite element simula-
tions. The ability to define a smooth surface from a given triangular mesh is therefore an important
problem. For topologically regular meshes a smooth triangular surface can be defined using box
splines [1]. In 1987 Loop generalized the recurrence relations for box splines to irregular meshes
[3]. Using his subdivision rules any triangular mesh can be refined. In the limit of an infinite
number of subdivisions a smooth surface is obtained. Away fromextraordinary vertices(whose
valenceN 6= 6) the surface can be parametrized using triangular Bezier patches derived from the
box splines [2]. Until recently it was believed that no parametrizations that lead themselves to
efficient evaluation existed at the extraordinary points. This paper disproves this belief. We define
a parametrization near extraordinary points and show how to evaluate them efficiently. The tech-
niques are identical to those used in our previous work on evaluating Catmull-Clark subdivision
surfaces [5]. The differences are in the details only: different parameter domain, different subdivi-
sion rules and consequently a different eigenanalysis. We assume that the reader is familiar with
the content of [5].

The remainder of this short paper is organized as follows. The next section briefly reviews trian-
gular Loop subdivision surfaces. Section 3 summarizes how we define and evaluate a parametriza-
tion for such surfaces. Section 4 discusses implementation details while Section 5 depicts some
results obtained using our scheme. Finally, some conclusions and possible extensions of this work
are given in Section 6. Material which is of a rather technical nature is explained in the appendices.

2 Loop Subdivision Surfaces

Loop triangular splines generalize the box spline subdivision rules to meshes of arbitrary topology.
On a regular part of the mesh each triangular patch can be defined by12 control vertices as shown
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Figure 1: A single regular triangular patch defined by12 control vertices.
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Figure 2: An irregular triangular patch defined byK = N + 6 = 13 control vertices. The vertex
labelled “1” in the middle of the figure is extraordinary of valence7.

in Fig. 1. The basis functions corresponding to each of the control vertices are given in Appendix
A. We obtained these basis functions by using a conversion from box splines to triangular Bezier
patches developed by Lai [2]. This (regular) triangular patch can be denoted compactly as:

s(v; w) = CT
b(v; w); (v; w) 2 
;

whereC is a12 � 3 matrix containing the control vertices of the patch ordered as in Fig. 1 and
b(v; w) is the vector of basis functions (see Appendix A). The surface is defined over the “unit
triangle”:


 = f (v; w) j v 2 [0; 1] and w 2 [0; 1� v] g:

The parameter domain is a subset of the plane such thatv = 1 corresponds to the point(1; 0) and
w = 1 corresponds to the point(0; 1). We introduce the third parameteru = 1� v � w such that
(u; v; w) forms a barycentric system of coordinates for the unit triangle. The valueu corresponds
to the origin(0; 0). The degree of the basis function is at most4 in each parameter and our surface
patch is therefore a quartic spline.
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Figure 3: The mesh of Fig. 2 after one Loop subdivision step. Notice that three-quarters of the
triangular patch can be evaluated.
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Figure 4: Three regular meshes corresponding to the three shaded patches. The labelling of the
control vertices defines the picking matrices.

The situation around an extraordinary vertex of valenceN is depicted in Fig. 2. The shaded
triangle in this figure is defined by theK = N + 6 control vertices surrounding the patch. The
extraordinary vertex corresponds to the parameter valueu = 1. Since the valence of the extraor-
dinary vertex in the middle of the figure isN = 7, there areK = 13 control vertices in this case.
The figure also provides the labelling of the control vertices. We store the initialK control vertices
in aK � 3 matrix

C
T
0 = (c0;1; � � � ; c0;K) :

3 Method of Evaluation

3.1 Setup

Through subdivision we can generate a new set ofM = K + 6 = N + 12 control vertices as
shown in Fig. 3. Notice that we now have enough control vertices to evaluate three-quarters of the
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triangular patch. We denote the new set of control vertices by:

C
T
1 = (c1;1; � � � ; c1;K) and

�CT
1 = (c1;1; � � � ; c1;K; c1;K+1; � � � ; c1;M) :

The subdivision step in terms of these matrices is entirely described by anK �K extended subdi-
vision matrixA:

C1 = AC0;

where

A =

 
S 0

S11 S12

!
; (1)

and the blocks are defined in Appendix B. The additional vertices needed to evaluate the surface
are obtained from a bigger subdivision matrix�A:

�C1 = �AC0;

where

�A =

0
B@ S 0

S11 S12

S21 S22

1
CA ;

andS21 andS22 are defined in Appendix B. Three subsets of12 control vertices from�C1 define
three regular triangular patches which can now be evaluated. If we repeat the subdivision step, we
generate an infinite sequence of control vertices:

�Cn = �ACn�1 = �AAn�1
C0; n � 1:

For eachn � 1 subsets of12 vertices from�Cn form the control vertices of a regular triangular
patch. Let us denote these three sets of control vertices by the following three12�3 matricesBn;k,
with k = 1; 2; 3. To compute these control vertices we introduce the12 �M “picking matrices”
Pk:

Bn;k = Pk
�Cn; k = 1; 2; 3:

Each row of the picking matrixPk is filled with zeros except for a one in the column corresponding
to the index shown in Fig. 4. Each surface patch is then defined as follows:

sn;k(v; w) = B
T
n;kb(v; w) = �CT

nP
T
kb(v; w):

We seek a parametrizations(v; w) for our triangular surface for all(v; w) 2 
. As shown in Fig.
5 we can partition the parameter domain into an infinite set of tiles
n

k , with n � 1 andk = 1; 2; 3.
These subdomains are defined forn � 1 more precisely as:


n
1 =

n
(v; w) j v 2

h
2�n; 2�n+1

i
and w 2

h
0; 2�n+1 � v

i o

n
2 =

n
(v; w) j v 2

h
0; 2�n

i
and w 2 [0; v]

o

n
3 =

n
(v; w) j v 2

h
0; 2�n

i
and w 2

h
2�n; 2�n+1 � v

i o
:

The surface patch is then defined by its restriction to each of these triangles:

s(v; w) 
n
k
= sn;k(tn;k(v; w)) = C

T
0

�
Pk

�AAn�1
�T
b(tn;k(v; w)); (2)
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Figure 5: The parameter domain is partitioned into an infinite set of triangular tiles.

where the transformationtn;k maps the tile
n
k onto the unit tile
 (with the correct orientation of

Fig. 1):

tn;1(v; w) = (2nv � 1; 2nw);

tn;2(v; w) = (1� 2nv; 1� 2nw) and

tn;3(v; w) = (2nv; 2nw � 1):

Eq. 2 actually defines a parametrization for the surface patch. However, it is expensive to evaluate
since it involves taking powers of a certain matrix to any numbern � 1. To make the parametriza-
tion more efficient, we eigenanalyze.

3.2 Eigenstructure

For any valenceN , the extended subdivision matrixA is non-defective. Consequently,A can be
diagonalized:

A = V�V�1; (3)

where� is the diagonal matrix which contains the eigenvalues andV contains the eigenvectors.
These matrices have the following block structure:

� =

 
� 0

0 �

!
and V =

 
U0 0

U1 W1

!
:

The diagonal blocks� and� correspond to the eigenvalues ofS andS12, respectively, and their
corresponding eigenvectors are stored inU0 andW1, respectively. The matrixU1 is computed by
extending the eigenvectors ofS, i.e., by solving the following linear systems:

U1�� S12U1 = S11U0: (4)

In Appendix B we compute the entire eigenstructure for Loop’s scheme precisely. LetĈ0 =
V
�1
C0 be the projection of the initial control vertices onto the eigenspace ofA and let�(v; w) be

theK-dimensional vector ofeigenbasisfunctions defined by:

�(v; w) 
n
k
= �n�1

�
Pk

�AV
�T
b(tn;k(v; w)) n � 1 and k = 1; 2; 3: (5)
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The eigenbasis functions for valencesN = 5 andN = 7 are depicted in Fig. 6. Each function of
the eigenbasis corresponds to one of the eigenvectors of the matrixA. Each eigenbasis function
is entirely defined by its restriction on the unit triangles
1

1, 

1
2 and
1

3. On each of these domains
the eigenbasis is a quartic spline. The basis functions can be evaluated elsewhere since they satisfy
the following scaling relation:

�(v=2; w=2) = ��(v; w):

The triangular surface patch can now be written solely in terms of the eigenbasis:

s(v; w) = ĈT
0�(v; w): (6)

In the next section we show how to implement this equation.

4 Implementation

The eigenstructures of the subdivision matrices for a meaningful range of valences have to be com-
puted once only. LetNMAXbe the maximum valence, then each eigenstructure is stored internally
in the following data structure:

typedef
struct f

double L[K]; /* eigenvalues*/
double iV[K][K]; /* inverse of the eigenvectors*/
double Phi[K][3][12]; /* Coefficients of the eigenbasis*/

g EIGENSTRUCT;
EIGENSTRUCT eigen[NMAX]; ,

whereK=N+6. The coefficients of the eigenbasis functions are given in the basis of Appendix A.
There are three sets of control vertices, one for each of the fundamental domains of the eigenbasis.
These control vertices are simply equal toPk

�AV. The eigenstructure was computed from the
results of Appendix B and by solving the linear system defined by Eq. 4 numerically. Also, we
numerically inverted the eigenvectors without encountering any numerical instabilities.

Using this eigenstructure the surface for any patch can be evaluated by first projecting theK
control vertices defining the patch into the eigenspace of the subdivision matrix with the following
routine.

ProjectPoints ( point *Cp, point *C, int N ) f
for ( i=0 ; i<N+6 ; i++ ) f

Cp[i]=(0,0,0);
for ( j=0 ; j<N+6 ; j++ ) f

Cp[i] += eigen[N].iV[i][j] * C[j];
g

g
g

This routine has to be called only once for a particular set of control vertices.
The evaluation at a parameter value(v,w) is performed by computing the product given in

Eq. 6.
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EvalSurf ( point P, double v, double w, point *Cp, int N ) f
/* determine in which domain
n

k the parameter lies*/
n = floor(min(-log2(v),-log2(w)));
pow2 = pow(2,n-1);
v *= pow2; w *= pow2;
if ( v > 0.5 ) f

k=0; v=2*v-1; w=2*w;
g
else if ( w > 0.5 ) f

k=2; v=2*v; w=2*w-1;
g
else f

k=1; v=1-2*v; w=1-2*w;
g
/* Now evaluate the surface */
P = (0,0,0);
for ( i=0 ; i<N+6 ; i++ ) f

P += pow(eigen[N].L[i],n-1) *
EvalBasis(eigen[N].Phi[i][k],v,w) * Cp[i];

g
g

Where the routineEvalBasis evaluates a regular triangular patch using the basis of Appendix
A. To evaluate higher order derivatives, we replaceEvalBasis with a function that evaluates a
derivative of the basis. In this case, the end result also must be multiplied by two to the power
n*p , wherep is the order of differentiation. Therefore, the following line should be added at the
end ofEvalSurf :

P = k==1 ? pow(-2,n*p)*P : pow(2,n*p)*P;

5 Results

We have implemented our evaluation technique and have used it to compute the eigenbases for
different valences. Fig. 6 depicts the entire set of eigenbasis for valences5 and7. Notice that the
last 6 eigenbasis functions are the same regardless of the valence, since they depend only on the
eigenvectors ofS21, which are the same for any valence. In fact, as for Catmull-Clark surfaces,
these eigenbasis functions are equal to simple monomials (see [5]). These basis functions contain
all the information necessary to analyze Loop subdivision surfaces. In particular, Fig. 7 shows
several curvature plots for some of the eigenbasis. In the plots red depicts positive curvature while
blue stands for negative curvature.

6 Conclusions and Future Work

In this paper we have shown that our evaluation technique first developed for Catmull-Clark sur-
faces can be extended to the class of Loop subdivision surfaces. Our next step will be to present
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(a)

(b)

Figure 6: Complete set of eigenbasis function for a patch of valence (a)N = 5 and (b)N = 7.

Figure 7: Curvature plots for various eigenbasis functions.
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these results in a more general setting in which Catmull-Clark and Loop are regarded as special
cases. The class of polynomial surfaces defined by Reif would be a good candidiate [4].
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A Regular Triangular Spline Basis Functions

The triangular surface defined by the control vertices shown in Fig. 1 can be expressed in terms of
12 basis functions. Since Loop’s scheme on the regular part of the mesh is a box spline, we can
find the corresponding Bezier patch control vertices of the triangle. Lai has developed FORTRAN
code which provides the conversion to the control vertices for the quartic triangular Bezier patches
corresponding to the box spline [2]. We have used his code (withL=2 , M=2andN=2) to get a
12 � 15 matrixM which converts from the Bezier control vertices of the patch to the12 control
vertices shown in Fig. 1. We get the12 basis functions for our triangular patch by multiplying the
15 multivariate Bernstein polynomials by the matrixM. Carrying out this multiplication leads to
the following result (thanks to Maple’s built in feature which converts to LaTeX):

b
T (v; w) =

1

12

�
u4 + 2 u3v; u4 + 2 u3w;

u4 + 2 u3w + 6 u3v + 6 u2vw + 12 u2v2 + 6 uv2w + 6 uv3 + 2 v3w + v4;

6 u4 + 24 u3w + 24 u2w2 + 8 uw3 + w4 + 24 u3v + 60 u2vw + 36 uvw2 +

6 vw3 + 24 u2v2 + 36 uv2w + 12 v2w2 + 8 uv3 + 6 v3w + v4;

u4 + 6u3w + 12 u2w2 + 6 uw3 + w4 + 2 u3v + 6 u2vw + 6 uvw2 + 2 vw3;

2 uv3 + v4; u4 + 6 u3w + 12 u2w2 + 6 uw3 + w4 + 8 u3v + 36 u2vw +

36 uvw2 + 8 vw3 + 24 u2v2 + 60 uv2w + 24 v2w2 + 24 uv3 + 24 v3w + 6 v4;

u4 + 8 u3w + 24 u2w2 + 24 uw3 + 6w4 + 6 u3v + 36 u2vw + 60 uvw2 +

24 vw3 + 12 u2v2 + 36 uv2w + 24 v2w2 + 6 uv3 + 8 v3w + v4;

2 uw3 + w4; 2 v3w + v4;

2 uw3 + w4 + 6 uvw2 + 6 vw3 + 6 uv2w + 12 v2w2 + 2 uv3 + 6 v3w + v4;

w4 + 2 vw3
�
;

whereu = 1� v � w.
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B Eigenstructure of the Subdivision Matrix

The subdivision matrixA is composed of three blocks. The upper left block contains the “extraor-
dinary rules” of Loop’s scheme. It is equal to

S =

0
BBBBBBB@

aN bN bN bN bN � � � bN bN bN
c c d 0 0 � � � 0 0 d
c d c d 0 � � � 0 0 0

...
...

...
c d 0 0 0 � � � 0 d c

1
CCCCCCCA
;

where
aN = 1� �(N); bN = �(N)=N; c = 3=8 and d = 1=8:

We have used the shorthand notation

�(N) =
5

8
�

(3 + 2 cos (2�=N))2

64
:

If we Fourier transform the matrix we get:

Ŝ =

0
BBBBBBBBB@

aN NbN 0 0 � � � 0
c c + 2d 0 0 � � � 0
0 0 f(1) 0 � � � 0
0 0 0 f(2) � � � 0

� � �
... � � �

0 0 0 0 � � � f(N � 1)

1
CCCCCCCCCA
;

where

f(k) =
3

8
+

2

8
cos (2�k=N) :

The eigenvalues and the eigenvectors of the transformed matrix are trivial to compute because of
the almost-diagonal structure. They are

�1 = 1; �2 =
5

8
� �(N); �3 = f(1); � � � ; �N+1 = f(N � 1):

Notice that we have�23 = �2. This is not surprising since Loop constructed his scheme from this
relation [3]. The eigenvalues�3 to �N�1 are of multiplicity two, sincef(k) = f(N � k), except
of course for the case whenN is even, then�2+N=2 is only of multiplicity one. The corresponding
eigenvectors are (when stored column wise):

Û0 =

0
BBBBBBBBB@

1 �8
3
�N 0 0 � � � 0

1 1 0 0 � � � 0
0 0 1 0 � � � 0
0 0 0 1 � � � 0

...
...

...
0 0 0 0 � � � 1

1
CCCCCCCCCA
:
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By Fourier transforming these vectors back, we can compute the eigenvectors of the matrixS. The
result is

U0 =

0
BBBBBBBBB@

1 �8
3
�N 0 0 � � � 0

1 1 1 1 � � � 1
1 1 E(1) E(2) � � � E(N � 1)
1 1 E(2) E(4) � � � E(2(N � 1))

...
...

...
1 1 E(N � 1) E(2(N � 1)) � � � E((N � 1)(N � 1))

1
CCCCCCCCCA
;

whereE(k) = exp (2�ik=N). These are complex valued vectors. To get real-valued vectors we
just combine the two columns of each eigenvalue to obtain two corresponding real eigenvalues.
For example, the two real eigenvectors for the eigenvalue�3+k, k = 0; � � � ; N � 1 are:

v
T
k = (0; C(0); C(k); C(2k); � � � ; C((N � 1)k)) and

w
T
k = (0; S(0); S(k); S(2k); � � � ; S((N � 1)k)) ;

where
C(k) = cos (2�k=N) and S(k) = sin (2�k=N) :

The corresponding matrix of diagonal vectors is equal to

� = diag
�
1; �2; �3; �3; � � � ; �(N�1)=2; �(N�1)=2

�
;

whenN is odd, and is equal to

� = diag
�
1; �2; �3; �3; � � � ; �N=2�1; �N=2�1;

1

8

�
;

whenN is even. This completes the eigenanalysis of the matrixS. Let us now turn to the remainder
of the matrixA.

The remaining blocks of the matrixA are now given.

S12 =
1

16

0
BBBBBB@

2 0 0 0 0
1 1 1 0 0
0 0 2 0 0
1 0 0 1 1
0 0 0 0 2

1
CCCCCCA

and S11 =
1

16

0
BBBBBB@

2 6 0 0 � � � 0 0 6
1 10 1 0 � � � 0 0 1
2 6 6 0 � � � 0 0 0
1 1 0 0 � � � 0 1 10
2 0 0 0 � � � 0 6 6

1
CCCCCCA
:

The matrixS12 has the following eigenvalues:

�1 = �2 = �3 =
1

8
; and �4 = �5 =

1

16
;

i.e.,

� = diag
�
1

8
;
1

8
;
1

8
;
1

16
;
1

16

�
:

And the corresponding eigenvectors are:

W1 =

0
BBBBBB@

0 �1 1 0 0
1 �1 1 0 1
1 0 0 0 0
0 0 1 1 0
0 1 0 0 0

1
CCCCCCA
:
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We point out that the following problem might occur when trying to solve Eq. 4. WhenN
is even, the column corresponding to the last eigenvector ofS gives rise to a degenerate linear
system, since the eigenvalue is1=8. Fortunately, the system can be solved manually, and in this
case the last column ofU1 is given by:

u
T
1;N+1 = (0; 8; 0;�8; 0) :

The remaining two blocks of the matrix�A are

S21 =
1

8

0
BBBBBBBB@

0 3 0 0 � � � 0 0 1
0 3 0 0 � � � 0 0 0
0 3 1 0 � � � 0 0 0
0 1 0 0 � � � 0 0 3
0 0 0 0 � � � 0 0 3
0 0 0 0 � � � 0 1 3

1
CCCCCCCCA

and S22 =
1

8

0
BBBBBBBB@

3 1 0 0 0
1 3 1 0 0
0 1 3 0 0
3 0 0 1 0
1 0 0 3 1
0 0 0 1 3

1
CCCCCCCCA
:
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