15. The radiosity method

Reading

Recommended:

e Cohen and Wallace, Radiosity and Realistic Image
Synthesis, Chapters 3-5.

The radiosity equation

Assume only diffuse reflection:

o BRDF — reflectance

fr(x,wi = wo) = fra(x) = @

e Radiance — radiosity
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L(x,wo) = L,(x)

Starting with the surface rendering equation:
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we drop angular dependences and substitute reflectance and
radiosity:
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The radiosity equation, cont’d

In the last step, we made two substitutions. The first is to replace
B, with E, a common notational choice.

The second is the definition:

G(x,x') _ cosficosb,
= 2

F(x,x) = V(x,x')
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F(x,x') describes the goemetry of light transport between x and

x'.




Overview of the radiosity method Visualizing radiosity transport

The radiosity method evolved as an idea that was eventually To solve for the radiosity function, we break a scene into patches
related to the finite element method. and solve a light transport equation.

Steps:

1. Model the environment

2. Discretize the surfaces

- Subdivide the surfaces

- Select nodes on elements

N

. Choose basis functions A room containinfg alight and one object

Break up the room into " patches”

. Choose a finite error metric = linear system.

. Compute coeflicients of the matrix — slowest part.

. Solve the linear system.

. Reconstruct for display.

. Display using Gouraud shading — use graphics hardware.

Each patch receives light from other patches... ..and reflects light back to these patches.

Basis functions Error metrics

Given a function B(x), we can subdivide it domain into a finite We need to define an error metric for our solution and then choose
set of elements and nodes. the B; that minimize the error.

We can then approximate B(x) with a finite set of basis functions, How about:
Ni(x), centered at the nodes.
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Error metrics, cont’d

Instead, we can substitute B(x) into the radiosity equation:

B(x) = E(x) +p(x)A4 F(x,x')B(x')dA'

In general, there is no solution. Why?
We can define what is called the residual:
r(x) = B(x) — E(x) — p(x) [ F(x,x)B(x)dA’
M
Rather than minimize r(x) directly, we integrate against weighting
functions and set the integrals to zero:
/r(x)wi(x)dx =r;=0i=1---n

We choose as many weighting functions as we have basis functions.
The result is a linear system.

Example weighting functions:

w; (X)

w; (X) =

Example

A common choice is:

e Constant basis functions, N;(x) = IM;(x)

e Galerkin weighted residuals.

The weighted residuals are then:

ri = / B(x) M; (x)dA — /E(x) n; (x)dA —
A A

M

Afp(x) [ F(x,x)B(x')dA'1; (x)dA

The first term becomes:

/E(x) M (x)dA
A

Example, cont’d

If we assume E(x) to be piecewise constant, then the second term
becomes:

A
If we assume p;(X) to be piecewise constant, then the third term
becomes:

Zp(x)]\{ F(x,x")B(x')dA' N; (x)dA =

/pi M; (x) / F(x,x') ¥ B; M; (x)dA'M; (x)dA
A i j

= pY B [ [ F(x,x) M (x) i (x)dA'dA
i A A

= p ¥ BiFy
J

Fj=[ [ F(x,x)dA'dA
Ay A;

Example, cont’d

The residual equation now becomes:
r; = BiA; — EA; — pi%:BjFij
Setting r; = 0 gives us:
BiA; = EA; — piX B;F;
J
Finally, we divide by A; and make one last subsitution:
B;=FE; + Pi%: B;F;;

Where Fj; is the form factor between elements A; and Aj:

F. 1 cos 8; cos @’
Fy=""7=_" 0V (x, x)dA'dA
] AZ Al 14 A{ 7TT'2 ( 3 )
We can write our finite element version of the radiosity equation in
matrix form:

[1-— p1F11 —P1F12 oo —P1F1n ( B, E,
—p2Fo 1 — poFy By E,
—p3Fy . . .
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Form factors Computing form factors

The matrix coefficients are comprised of reflectances muliplied by There are two basic approaches to computing form factors:

form factors.
e Analytic

The form factor, Fj; is the fraction of power per unit area leaving - There are exact solutions for some geometries.
A; and arriving at A;. - Still have to solve for occlusions...

The form factor reciprocity relation: * Quadrature

- Sample the integral, including occlusions
AiFij = AjFji

- Regular vs. stochastic sampling

yields a nice interpretation of the discrete radiosity equation.
Multiplying it through by Aj;:

BiA; = EjAi+piY BiAF;
j

BzAz = ElAl + Pi Z BJAJF']Z
J

q>o = q>e +PZ(¢0)] ijz
J

d, = D, + pd;

Solving the linear system Jacobi iteration

The linear system is of a form: Example: Jacobi iteration.
MB=E

This can also be written as: Solution is the Neumann series:
(I-T)B=E

Where T is the discrete radiosity transport operator.

B=(I-T)'=E+TE+T*E+---

Two important properties of M and T This can be solved in steps:

1. M and T are not sparse. BO ~ E

2. Eigenvalues of T are less than 1. B ~ O L 1pRO

(2) (1) (1)
Direct solution methods: BY «+ BY4+TB

e Compute B = M~'E.

o Inefficient for large systems: O(n?)
Truncate after m iterations: O(mn?).

Iterative solution methods

e Update the solution in steps that gradually improve the
solution.

e Properties of M ensure convergence.

e Ideal for graphics: a few iterations can yield an adequate
image.




Jacobi iteration, cont’d Progressive radiosity

Cost of Jacobi iteration: Whenever we multiply a row of T by B, we can think of this as
gathering energy into a patch.

o O(n?) interactions
e O(n?) form factors to compute A faster converging method is based on the notion of “shooting”

energy from patches.
e O(n’logn) to compute form factors & P

o O(mn?) to solve

Bottom line: must compute O(n?) form factors.

Other methods are much faster still... %N‘

Progressive radiosity, cont’d Hierarchical radiosity

The idea is: In many cases, there is an inherent imbalance in the element to

element interactions:

. Sort the patches by the amount of radiosity they currently
have.

. Shoot the energy from the brightest patch to all the other
patches.

. Mark this patch as having zero “unshot” radiosity.
. Choose the next patch with the largest unshot radiosity and

iterate.
Inspiration for a solution: fast N-body algorithms.

This approach is called “progressive radiosity”.

The convergence is substantially faster, closer to O(n) in practice.




Hierarchical radiosity, cont’d

Refinement algorithm:

1. Estimate visibility, Vj;

2. If Vj; not 1 or 0, subdivide larger patch and go to 1.
3. Estimate Fj;, F;

4. If Fy;

ij» Fyi > Fe, subdivide larger patch and go to 1.

5. “Link” patches

=

Hierarchical radiosity example

Solving the hierarchical system

Until converged
For each patch
Gather energy for each patch and its children
Distribute energy up and down the patch’s hierarchy

Can incorporate refinement into the soltuion stage:

e Compute BF energy transports and refine links only if
significant.

The complexity can be shown to be linear in n, the number of leaf
node patches.

However, the original input patches are the parent patches, so if
there are k input patches, there are at least O(k?) interactions.
Total complexity is then O(n + k?).

Reconstruction and display

For rendering with graphics hardware, must compute radiosity at
the vertices:

The result is a view-independent solution. Can display with fast
Gouraud shading.




Meshing Radiosity and view-dependence

Choosing the mesh subdivision affects results significantly. The Gouraud-shaded result exhibits artifacts and does not model
specularity.

Problems:
1. Final gather

1. Light leaks
Compute view-independent solution. Then:

e Cast a ray through each pixel

o Intersect with surface patch.

e Cast rays to each linked patch.

e Add up the radiosity and return.
2. Shadows

Solution is called “discontinuity meshing.”

25 26

Radiosity and view-dependence, cont’d

2. Importance

Do hierarchical refinement based on contribution to current
viewpoint.

E.g., subdivide visible surfaces and their linked counterparts more
finely.

3. Multi-pass methods

Basic idea:

e Use radiosity to capture diffuse interreflections.

e Use ray tracing to capture specular components.
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