11. Parametric curves

Reading

Recommended:

o Bartels, Beatty, and Barsky, An Introduction to
Splines for use in Computer Graphics and
Geometric Modeling, 1987.

e Farin, Curves and Surfaces for Computer Aided
Geometric Design, 1997.

Outline

e Basics:

- Introduction to mathematical splines

- Bézier curves
- Continuity conditions (C?, C*, C2, C?)

e Splines:
- C? interpolating splines
- B-splines

- Catmull-Rom splines

Introduction

Mathematical splines are motivated by the
“loftsman’s spline”:

e Long, narrow strip of wood or plastic
e Used to fit curves through specified data points
e Shaped by lead weights called “ducks”

o Gives curves that are “smooth” or “fair”

Such splines have been used for designing:

o Automobiles
o Ship hulls

o Aircraft fuselages and wings

Mathematical splines

The mathematical splines we’ll use are:
o Piecewise
e Parametric

e Polynomials

We’ve seen the term parametric before. Let’s look at the
other two terms. . . .

Parametric polynomial curves

A parametric “polynomial” curve is a parametric curve
where each function z(t), y(¢) is described by a
polynomial:

n .
= Y ait’
=0

3 bt
i=0

Polynomial curves have certain advantages:

e Easy to compute

o Infinitely differentiable

Piecewise parametric polynomial curves

A “piecewise” parametric polynomial curve uses
different polynomial functions for different parts of the
curve.

e Advantage: Provides flexibility.

e Problem: How do you guarantee smoothness
(continuity) at the joints?

In the rest of the lecture, we’ll look at:

1. Bézier curves — general class of polynomial curves

2. Splines — ways of putting these curves together

Bézier curves

e Developed simultaneously by Bézier (at Renault)
and de Casteljau (at Citroen), circa 1960.

o The Bézier curve Q(u) is defined by nested
interpolation:

e V;’s are “control points”

o {Vp,...,V,} is the “control polygon”

Bézier curves: Basic properties

Bézier curves enjoy some nice properties:

e Endpoint interpolation:
Q) =W
QM) = Vi

e Convex hull: The curve is contained in the “convex
hull” of its control polygon
e Symmetry:
QUu) defined by {V...,Va}
= Q(1 — u) defined by {V,,,...,Vo}

Bézier curves: Explicit formulation

Let’s give V; a superscript Vl-j to indicate the level of
nesting.

An explicit formulation for Q(u) is given by the
recurrence:

V= (-0 V'™ + uViy

Explicit formulation, cont.

For n = 2, we have:
Q) = V7
L—u)Vy + ul
I—w) [A=w) VP + uV| + u[l-w)V + uVy

1—u)?VY + 2u(l—u)VQ + 2V)

In general:
Qu) = i:Vi (TZL) ul (1 =)™

i=0
' (u)

B!"(u) is the 7’th Bernstein polynomial of degree n.

Bézier curves: More properties

Here are some more properties of Bézier curves

Quw = v () ua—u

e Degree: QQ(u) is a polynomial of degree n

e Control points: A Bézier curve of degree n requires
n + 1 control points. Why?

More properties, cont.

e Tangents:
Q'(0) = n(Vi — V)
Q') n(Vy — Va1)

o k'th derivatives: In general,
- Q®)(0) depends only on Vj, ..., Vi
- Q®)(1) depends only on V..., Vi

- (At intermediate points u € (0, 1), all control
points are involved for every derivative.)

Cubic curves

For the rest of this discussion, we’ll restrict ourselves to
piecewise cubic curves.
e In CAGD, higher-order curves are often used

- Gives more freedom in design

- Can provide higher degree of continuity between
pieces

e For graphics, piecewise cubic let’s you do just about
anything

- Lowest degree for specifying points to
interpolate and tangents

- Lowest degree for specifying curve in space

All the ideas here generalize to higher-order curves.

Matrix form of Bézier curves

Bézier curves can also be described in matrix form:

; Vi (f) ul (1 —u)

=0

(1—u)?Vy + 3u(l—u)?V; + 3u*(l—u)Va + v* W3

-1 3 =3
3 —6 3
-3 3 0
1 0 0

= [u3u2u1]

1
0
0
0

Display: Recursive subdivision

Q: Suppose you wanted to draw one of these Bézier
curves — how would you do it?

A Recursive subdivision:

Display, cont.

Here’s pseudocode for the recursive subdivision display
algorithm:

procedure Display({Vy, ..., V,}):
if {Vo, ..., V,} flat within € then
Output line segment VyV,

else

Disp]aY({LUa fey L’n})
Disp]aY({Rﬂv feey Rn})
end if

end procedure

Subdivide to produce { Ly, ..., L,} and {Ry, ..

'7Rn}

Positional (C°) continuity

To build up more complex curves, we can piece together
different Bézier curves to make “splines.”

Q: What condition ensures positional continuity?

Derivative (C') continuity

Q: What condition ensures derivative continuity?

Q: How might you build an interactive system to satisfy
these constraints?

Curvature (C?) continuity

Q: Suppose you want even higher degrees of continuity
e.g., not just slopes but curvatures what
additional geometric constraints are imposed?

C3 continuity

Summary of continuity conditions

o O straightforward, but generally not enough

o (3 is too constrained (with cubics)

Creating continuous splines

We'll look at three ways to specify splines with C! and
C? continuity:

1. C? interpolating splines
2. B-splines
3. Catmull-Rom splines

C? Interpolating splines

Problem: Describe an interactive system for specifying
C? interpolating splines.

Solution:

1. Let user specify first four Bézier control points.

2. This constrains next control points —
draw these in.

3. User then picks
4. Repeat steps 2-3.

The control points specified by the user, called “joints,
are interpolated by the spline.

22

”

A more in-depth analysis

Recall that for each of 2 and y, we needed to specify
conditions for each cubic Bézier segment.

So if there are m segments, we’ll need
constraints.

Q: How many of these constraints are determined by
each joint?

In-depth analysis, cont.

At each interior joint j, we have:

1. Last curve ends at j
2. Next curve begins at j
3. Tangents of two curves at j are equal

4. Curvature of two curves at j are equal

The m segments give:
° interior joints

° conditions

The 2 end joints give 2 further constraints:

1. First curve begins at first joint

2. Last curve ends at last joint

Gives constraints altogether.

End conditions

The analysis shows that specifying m + 1 joints for m
segments leaves 2 extra degrees of freedom, which could
be specified in a variety of ways:

e Qur interactive system

- Constraints specified as

e “Natural” cubic splines

- Second derivatives at endpoints defined to be 0

e Maximal continuity

- Require C3 continuity between first and last
pairs of curves

Natural splines vs. mazimal continuity (Bartels et al., 3.4)

Global vs. local control

These C? interpolating splines yield only
“global control” — moving any one control point may
change the entire curve!

Global control is problematic:

e Makes splines difficult to design

e Makes incremental display inefficient

There’s a fix, but nothing comes for free. Two choices:
e B-splines
- Keep C? continuity
- Give up interpolation

e Catmull-Rom splines

- Keep interpolation

- Give up C? continuity — provides C* only

B-splines

Previous construction (C2 interpolating splines):

e Choose Bézier control points, constrained by the
“A-frames.”

New construction (B-splines):

e Choose points on A-frames

e Let these determine the Bézier control points

The B-splines I'll describe are known more precisely as
“uniform B-splines.”

B-spline construction

The control points in this construction are called
“de Boor points.”

B-spline properties Algebraic construction of B-splines

Here are some properties of B-splines:

o C? continuity

e Approximating

- Does not interpolate control points

e Locality

- Each segment determined by 4 control points

- Each control point determines 4 segments

e Convex hull

- Curve lies inside convex hull of control points

Algebraic construction of B-splines, cont. Drawing B-splines

Once again, this construction can be expressed in terms Drawing B-splines is therefore quite simple:
of a matrix:

procedure Draw-B-Spline({ By, ..., B,}):
fori < 0ton —3do
Convert B;, ..., B;i3into a
Bezier control polygon Vg, ..., V3
Display({Va, ..., V3})
end for

end procedure

Catmull-Rom splines

The Catmull-Rom splines
o Give up C? continuity

o Keep interpolation

For the derivation, let’s go back to the interpolation
algorithm. We had 4 conditions at each joint j:

1. Last curve ends at j
2. Next curve begins at j
3. Tangents of two curves at j are equal

4. Curvature of two curves at j are equal

Ifwe. ..

e Eliminate condition 4

e Make condition 3 depend only on local control
points

.. .then we can have local control!

Derivation of Catmull-Rom splines

Idea: (same as B-splines)

e Start with control points to interpolate

o Build a cubic Bézier curve between successive points

The endpoints of the cubic Bézier are obvious:
Vo = Bi
V3 = By

Q: What should we do for the other two points?

34

Derivation of Catmull-Rom, cont.

A: Catmull & Rom set the deriviative at the control
points to half the the vector between neighboring
control points:

Many other choices work — for example, using an
arbitrary constant 7 times this vector gives a “tension”
control.

The Catmull-Rom splines also admit a matrix
formulation:

Exercise: Derive this matrix.

Properties

Here are some properties of Catmull-Rom splines:

o C' continuity

e Interpolating
e Locality

e Convex hull property?

