Reading

Strongly Recommended:

e Foley, et al, section 14.10.
3. Sampling theory

Recommended:

e Don Mitchell and Arun Netravali, Reconstruction
Filters in Computer Graphics. Computer Graphics
(SIGGRAPH ’88) 22(4), 221-228.

Samples in graphics Samples in graphics, cont’d

In computer graphics, we encounter sampled Let’s list a number of examples of samples in graphics:
representations constantly.

Example: the rendering pipeline.

3D scene

projection

Continuous 2D image

sampling

Discrete 2D image i B
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Aliasing in graphics

One of the most objectionable artifacts that arises in
graphics is aliasing.

Consider a continuous function f(z). Now sample it at
intervals A to give f[i] = f(iA).

Q: How well does f[i] approximate f(x)?

Consider sampling a sinusoid:

f(x)
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In this case, the sinusoid is reasonably well
approximated by the samples.

Aliasing, cont’d

Now consider sampling a higher frequency sinusoid
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We get the exact same samples, so we seem to be
approximating the first lower frequency sinusoid again.

We say that, after sampling, the higher frequency
sinusoid has taken on a new “alias”, i.e., changed its
identity to be a lower frequency sinusoid.

Aliasing, cont’d

Other examples include aliasing due to polygon
rasterization:
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Magnification

Temporal aliasing:

Linear shift-invariant systems

To study the theory of sampling and reconstruction, we
need some definitions, starting with linear systems.

L is linear if:

Lifi+ fi] = LAl + L[f)]
Liaf] = aLl[f]

L is shift-invariant if:

Lif(z —a)] = g(z — a)




Convolution

The behavior of a Linear Shift-Invariant (LSI) system
can be written in terms of convolution:

Tf(a)h(x —a)da
fxh
hxf

where h(z) is the impulse response. (The choice of
terminology will be clearer shortly.)

To visualize this, let’s consider a symmetric (a.k.a.,
even) function, h(z) = h(—x). Then:

o@) = [ fl@)h(a—2)da

Convolution with the rect function

For example, the “rect” function, M(z):

x>
X =
x <
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Convlution means sliding M(z) over f(z) and
computing the integral at each position:

In this case, h(z) is a filter that averages over a
neighborhood and smooths f(z).

The impulse function

The most important function in sampling theory is the
impulse function or Dirac delta function or just delta
function.

It is defined in the limit:

such that:

It is drawn as:

Sifting and shifting

Since the delta function is zero everywhere except where
its argument is zero, we can derive the sifting property:

Zof(x)(S(a: —z,)dz =

We can also show how a delta function can be used to
shift a function:

= 77 fl@)d(z —z, — @) da




Impulse response Sampling

We can discover the impulse response of an LSI system We can use the delta function to sample another
by feeding it a delta function: function. As we indicated above:

f(@)o(z — o) = f(2,)0(z — )

To acquire a set of equi-spaced samples we can
construct an impulse train:

Imm:éiaz—n

ak.a., the shah or comb or sampling function.

To sample just multiply:

f@iz) = ) 5 b—1)
2 J@)i—i)
5 1@ i)
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Replication Fourier series

If we convolve a function with the impulse train, we get Consider a periodic function:
many replicas of that function:

f(@)*1(z) = f(z)* % oz —i)
i=—00 We can write this as a weighted sum of sines and
cosines.

3 fla)x @ —i)

1=—00

5 fa=i)

Let’s consider just cosines for the even function above:

x i
f(®)= Y ajcos2n—zx
=—00 T

We can compute a;:

1 1
S Ur—
a; f(z) COS|: m—z| dr




Cosine transform

We can derive the cosine transform from the Fourier
series of an even function.

First, plug the expressions for the Fourier series
coefficients into the summation:

f(z)cos [27r%w dzx - cos QW%.I

Now define As = %:
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f(z) cos[2miAsz] dx - cos 2milsx - As

{_ %Oj f(z) cos [2miAsz] dm} - cos 2miAsT - As

Cosine transform, cont’d

Now let T" — oo:

which leads to:

f(a) = Z

o0
{ / f(x)cos2msz dm} cos 2msz ds

o0

Cosine transform, cont’d

We can think of the term in brackets as the “cosine
tranform” of f(z):

a; — a(s) = 7 f(z) cos2msz dz

And the “inverse cosine transform” would then be:

a(s) cos2msz ds

Fourier transform

In general, functions must be represented as
combinations of cosines and sines.

A compact way of “encoding” a sine and a cosine is
given by the Euler relation:

€% = cosf + jsinf

This ultimately leads us to the Fourier transform:
o0 .
F(s)= / f(z)e 72 dyg;
—0o0
and the inverse Fourier transform:
o0 .
flz) = / F(s)e/™™ dg
—00

If f(x) is even, then we get back exactly the cosine
transform and its inverse.




Example: the “sinc” function

What is the Fourier transform of the rect function?

oo , 2
/I’l(z)e_ﬂ”zdz = / 2T dg
%) -1/2

_ -1 e i2msz |1/2

j2ms -2

_efj‘lrsz + ejﬂsz
127s

j2sin7s

j2ms

sin s

s

= sinc(s)
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Useful theorems

Similarity theorem:

flaz) — éF (E)

a

Shifting theorems:

fle—z,) — F(s)e’ﬂ”"

f(z)eﬂ”" — F(s—s,)

Convolution theorems:

fxg - F-G
frg = FxG
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Sampling and spectrum replication

The impulse train is the Fourier transform of itself:

IM1(z) — T1(s)

The impact of adjusting the sample spacings on the
Fourier transform is:

1(az) — 2111 (2)

Finally, sampling leads to spectrum replication:

F(2)lI(z) — F(s)II(s) = éx F(s — i)
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