
2. Color
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Reading

Required

� Brian Wandell, Foundations of Vision. Sinauer

Associates, Sunderland, MA, 1995, Chapter 4.

Suggested:

� Foley et al., Sections 13.2{13.6

� Glassner, Sections 1.7, 2.1, 2.2, 3.6

Further reading:

� Gerald S. Wasserman. Color Vision: An Historical

Introduction. John Wiley & Sons, New York, 1978.

� Michael Wilcox. Blue and Yellow Don't Make

Green. North Light Books, Cincinnati, 1987.

� John E. Kaufman, ed. IES Lighting Handbook:

Reference Volume. Illuminating Engineering

Society, New York, 1981.
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Scotopic matching

Recall that scotopic vision is low light vision initiated

by the rods.

For the scotopic matching experiment, an observer

compares two lights:

1. A test light, t

2. A primary light, p

The observer can adjust the emissive power, e, of the

primary.

The key results of this experiment are:

1. Only one primary is required.

2. Any primary will work, thus, no wavelength

discrimination

3. Matching is linear

� If t matches ep, then ct matches cep.

� If t1 matches e1p1 and t2 matches e2p2, then

t1 + t2 matches e1p1 + e2p2.
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Scotopic matching, cont'd

Due to linearity, we can write a matrix equation to

describe scotopic matching:

�
R

�
=

�
r1 r2 � � � rn�

�

2
666666664

t1
t2
...

tn�

3
777777775

or:

�
R

�
=

�
rT

�
2
666664 a

3
777775 = r � a

where t1; t2; � � � ; tn� are samples of the test spectrum

and r1; r2; � � � ; rn� are samples of the scotopic spectral

sensitivity function.

By applying monochromatic test lights,

mi = [0 � � � 010 � � � 0], we can determine r.
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Connection to rods

The result can be drawn as a continuous curve:

Biological basis: this curve corresponds exactly to the

absorption characteristics of rhodopsin, the

photopigment in rods.

We can in general determine the matching coe�cients

by integrating:

R =
Z
r(�)a(�)d�
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Newton's experiments on color

Newton was the �rst to perform scienti�c experiments

on color, in 1666.

Newton's sketch of his experiment (Wandell, 4.1)

Built a simple colorimeter:

� Hole in a shutter

� Prism to disperse white light into spectrum

� Comb-shaped aperture to manipulate spectrum

� Converging lens to recombine spectrum
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Newton's experiments, cont.

Newton de�ned two types of light:

� Simple: Light that cannot be further dispersed by a

prism (now called monochromatic).

� Compound: Light that can be dispersed.

He called the colors of simple lights primaries.

[This term has many other meanings today.]
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Newton's experiments, cont.

To study the appearance of colors, Newton recombined

primaries to create new colors.

A modern day version of this kind of experiment looks

like:

The color matching experiment (Wandell, 4.10)
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Cones and color matching

As with rods, the cones contain photopigments that

characterize there responses to light.

We can write the cone respones equations as integrals:

L =
Z
l(�)t(�)d�

M =
Z
m(�)t(�)d�

S =
Z
s(�)t(�)d�

We can also use matrix notation, which will prove useful

in a moment:

2
666664

L

M

S

3
777775 =

2
666664

lT

mT

sT

3
777775

2
666664 t

3
777775

Q: When do two lights look the same?

Q: How many di�erent spectra will look the same?
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How many primaries?

Newton posed a fundamental question that took almost

two centuries to answer:

Q: How many primaries does it take to produce a

perfect white?

A: (Newton) De�nitely more than 2; and 4 or 5 su�ce.

In 1852, Helmholtz proposed a generalized form of this

question:

Q: How many primaries does it take to produce the

entire spectrum?

A: (Newton) 7.

A: (Young, 1802) 3.

A: (Helmholtz) 5.

A: (Maxwell) 3.

Who do you think was right? Why?
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Photopic matching

Let's assume the answer to be 3 and perform the

photopic matching experiment. (Recall that photopic

vision is high light level vision initiated by cones.)

Consider three primaries, p1;p2;p3, with three emissive

power knobs, e1; e2; e3.

The three knobs allow us to create spectra of the form:

How do we set the knobs to match test spectrum, t?
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Photopic matching (cont'd)

First, we compute the response to the primaries:

2
666664

Lp

Mp

Sp

3
777775 =

2
666664

lT

mT

sT

3
777775

2
666664 e1p1 + e2p2 + e3p3

3
777775

=

2
666664

lT

mT

sT

3
777775

2
666664 p1 p2 p3

3
777775

2
666664

e1
e2
e3

3
777775

=

2
666664

l � p1 l � p2 l � p3

m � p1 m � p2 m � p3

s � p1 s � p2 s � p3

3
777775

2
666664

e1
e2
e3

3
777775
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Photopic matching (cont'd)

In order for the primaries to match the test, we require

the cone responses to be identical:

2
666664

Lt

Mt

St

3
777775 =

2
666664

lT

mT

sT

3
777775

2
666664 t

3
777775 =

2
666664

Lp

Mp

Sp

3
777775

This gives us:

2
666664

e1
e2
e3

3
777775 =

2
666664

l � p1 l � p2 l � p3

m � p1 m � p2 m � p3

s � p1 s � p2 s � p3

3
777775

�1
2
666664

lT

mT

sT

3
777775

2
666664 t

3
777775

and �nally:

2
666664

e1
e2
e3

3
777775 =

2
666664

p1
T

p2
T

p3
T

3
777775

2
666664 t

3
777775
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Photopic matching (cont'd)

Key observations:

1. Three primaries are \su�cient" for color matching.

2. We can compute the knob settings using three

vectors (functions), p1;p2;p3. These are called

color matching functions.

3. Color matching functions are determined by the

primaries and the cone responses. These functions

are linear transforms of the cone responses.

4. All sets of color matching functions are linear

transforms of each other.

5. The resulting knob settings can take on negative

values.
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Negative light

What does it mean to use a negative amount of a

primary?

Consider:

2
666664

lT

mT

sT

3
777775

2
666664 t

3
777775 =

2
666664

lT

mT

sT

3
777775

2
666664 0:5p1 � 0:3p2 + 0:4p3

3
777775

To make e2 behave like a \real" (i.e., positive values

only) knob, we have to move it over to the other side:

2
666664

lT

mT

sT

3
777775

2
666664 t + 0:3p2

3
777775 =

2
666664

lT

mT

sT

3
777775

2
666664 0:5p1 + 0:4p3

3
777775

So, if we are allowed to move a primary to the other

side, we will be able to match any color.
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Example: Wright's experiments

In the late 20's, Wright found that the colors of all

wavelengths could be reproduced with combinations of 3

primaries at 460, 530, and 650nm:

Relative luminances for color matches (Wasserman, 3-3)

These functions are color-matching functions for the

given primaries.
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R,G,B phosphors as primaries

Here are the spectra for typical R,G,B phosphors in a

color monitor:

Emission spectra for RGB monitor phosphors (Wandell B.3)
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Metamers

After integrating a spectrum against a set of color

matching functions, you are left with 3 numbers.

Spectra that yield the same three numbers will be

indistinguishable. Such spectra are called metamers.

Metamers: dim tungsten bulb and RGB monitor with suitably

chosen R,G,B values (Wandell, 4.11)
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Subtractive mixtures

Two examples of subtractive color mixture (Wasserman, 2-2)

Newton also characterized the di�erence between

additive and subtractive color mixtures.

Subtractive color mixtures:

� Due to selective absorption by pigments.

� Di�cult to characterize in general.
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Subtractive metamers

Re
ectances of two surfaces that are metamers in daylight, but

appear to have di�erent colors under tungsten light

(Wasserman, 3.9)

� The solid curve appears green both indoors and out.

� The dashed curve looks green outdoors, but brown

under yellowish incandescent light.
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Illustration of color appearance

From illumination to cone responses (Wandell, 9.2)
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Imaginary primaries

Given mathematical freedom, we can also dream up

primaries that have negative power at some

wavelengths. Such primaries are \imaginary primaries."

This is actually a necessity if we want to devise strictly

positive matching functions. Why would we want to do

this?
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The XY Z system

In 1931, the CIE (Commission Internationale de

l'Eclairage) adopted the XY Z system, which has the

following properties:

� Every color can be made with positive

combinations of primaries called X, Y, Z.

� The X;Y;Z primaries are imaginary.
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The CIE color-matching functions

Here are the color-matching functions x; y; z:

The XYZ color-matching functions (Wasserman 3-8)

Note: By design, the y curve is just the \luminous

e�ciency curve."
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Computing CIE coordinates

The X;Y; Z coordinates are computed by:

X =
Z
I(�)x(�)d�

...

From these, the chromaticity coordinates x; y; z are

computed by:

x =
X

X + Y + Z

...

Note: x; y; z are all on the X + Y + Z = 1 plane.
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Visualizations of the CIE color space

Visualizations fo the CIE color space (Foley, II-1)

26

The CIE chromaticity diagram

The CIE chromaticity diagram is the projection of the

X + Y + Z = 1 plane onto the (X;Y ) plane:

The chromaticity diagram (Wasserman 3-7)

Each point of the diagram gives a chromaticity value,

which depends on:

� the \dominant wavelength" or \hue" | red, yellow,

etc.;

� the \excitation purity" or "saturation" | closeness

to grey.
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The CIE diagram, cont.

The chromaticity diagram (Wasserman 3-7)

� Dominant wavelengths go around the outside of

the diagram.

� Excitation purity is given by the ratio AC=BC,

where

� C is white light;

� A is color being tested;

� B is extrapolation of CA to curve | i.e., the

dominant wavelength.
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The CIE diagram, cont.

The chromaticity diagram (Wasserman 3-7)

� \Complementary colors"

� Colors that can be mixed to produce white light.

� Lie on opposite sides of C.

� \Nonspectral colors"

� Lie on wedge that does not project to any

dominant wavelength.

� Reds, magentas, purples
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Gamuts

A display device has a range of reproducible colors that

depend on the spectra reproduced by the

phosphors/pigments/etc.

This range or reproducible colors is called the gamut of

the device.

Gamuts of a monitor and a printer illustrated in CIE

coordinates (Foley, II-2)
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Perceptual uniformity

The XY Z space is not perceptually uniform:

Areas of constant color (enlarged) (Wasserman 3-10)
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Perceptually-uniform color spaces

Some perceptually-uniform spaces include:

� L�u�v�

� L�a�b�

� \Farnsworth's non-linear transformation"

The �rst two of these involve taking cube roots, etc.

Formulas for L�u�v� and L�a�b� in terms of XY Z are

given in [Glassner].

Main point is that Euclidean distance is supposed to

work better in these spaces.
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