
1

Hardware Rendering

Brian Curless
CSE 557

Autumn 2017



2

Reading

Required:

 Shirley, Ch. 7, Sec. 8.2, Ch. 18

Further reading:

 Foley, et al, Chapter 5.6 and Chapter 6
 David F. Rogers and J. Alan Adams, 

Mathematical Elements for Computer 
Graphics, 2nd Ed., McGraw-Hill, New York, 
1990, Chapter 2. 

 I. E. Sutherland, R. F. Sproull, and R. A. 
Schumacker, A characterization of ten hidden 
surface algorithms, ACM Computing Surveys
6(1): 1-55, March 1974.



3

Going back to the pinhole camera…

For each pixel center Pij

 Send ray from eye point (COP), C, through Pij

into scene.
 For each object, intersect with the ray
 Select nearest intersection.

Recall that the Trace project uses, by default, the 
pinhole camera model.  

If we just consider finding out which surface point is 
visible at each image pixel, then we are ray casting.



4

Alternative Approach

We could also flip the order of the loops:

For each triangle in the scene,

• For each pixel, determine if the triangle projects onto it

• Update pixel if this triangle is the closest one so far



5

To determine which pixels a triangle projects onto, 
take this imaging setup:

then warp all of space so that all the rays are 
parallel:

then just drop the z-coordinate to get pixel 
coordinates:

In practice, we keep track of the z-coordinate 
during drawing to determine visibility.

Warping space



6

3D Geometry Pipeline

Graphics hardware follows the “warping space” 
approach.

Before being turned into pixels, a piece of 
geometry goes through a number of 
transformations...



7

Z-buffer
The Z-buffer or depth buffer algorithm                    
[Straßer, 1974][Catmull, 1974] can be used to 
determine which surface point is visible at each pixel. 

Here is pseudocode for the Z-buffer hidden surface 
algorithm, for a viewer looking down the –z axis 
(bigger – i.e., more positive – z’s are closer):

Q: What should FAR  be set to?

for each pixel (i, j) do
Z-buffer [i, j]   FAR
Framebuffer [i, j] <background color>

end for
for each triangle A do

for each pixel (i, j) in A do
Compute depth z of A at (i, j)
color  shader(A, i, j )
if z > Z-buffer [i, j ] then

Z-buffer [i, j]  z
Framebuffer [i, j]  color

end if
end for

end for



8

Rasterization

We only need to compute the pixel coordinates of 
the vertices of the triangle – the interior pixels can 
be determined via interpolation.

This process called rasterization.

During rasterization, the z value can be computed 
incrementally (fast!).

Curious fact:

 Described as the “brute-force image space 
algorithm” by [SSS]

 Mentioned only in Appendix B of [SSS] as a 
point of comparison for  huge memories, but 
written off as totally impractical.

Today, Z-buffers are commonly implemented in 
hardware.



9

Rasterization with color

During rasterization, colors can be smeared across 
a triangle as well:



10

Hardware Pipeline

A vertex shader is run for each vertex, and outputs 
values to be interpolated across the triangle.

The vertices are grouped into triangles (or other 
primitives, e.g. lines) to be rasterized. A geometry 
shader is possibly run to generate more primitives.

We iterate through scanlines, interpolating outputs 
from the vertex shader at each pixel.

A fragment shader (or pixel shader) is called at each 
pixel in the primitive, which gets the interpolated 
values and outputs a final color to the framebuffer.

Vertex 
processor

Rasterizer

Fragment
processor

Primitive
assembler



11

GLSL: Anatomy of a Vertex Shader

Vertex 
processor

Rasterizer

Fragment
processor

Primitive
assembler

#version 400

in vec3 position;
in vec3 vertex_color;

out vec3 color;

uniform mat4 modelview;
uniform mat4 projection;

void main() {
color = vertex_color;  
gl_Position = projection * modelview * vec4(position, 1.0);
// color = vec3(1.0, 0.0, 0.0);
// gl_Position = vec4(1.0, -1.0, 0.0, -1.0);

}



12

GLSL: Anatomy of a Fragment Shader

Vertex 
processor

Rasterizer

Fragment
processor

Primitive
assembler

#version 400

in vec3 color;

out vec4 frag_color;

void main() {
frag_color = color;  

}



13

GLSL: Storage Qualifiers

uniform : Global value that is the same across all vertices and fragments 
(for this draw call).

• Model/view/projection matrices, light parameters, material 
parameters (maybe), textures…

Vertex shader in: Per-vertex attributes (that were sent to the GPU)

Vertex shader out: Values to be interpolated at each fragment shader

Fragment shader in: Interpolated values of Vertex shader out’s 

Fragment shader out: Value to be written to frame buffer

• Normals, positions, colors, material parameters (maybe), texture 
coordinates…



14

Gouraud interpolation

Recall from the shading lecture, rendering with per 
triangle normals leads to faceted appearance.  An 
improvement is to compute per-vertex normals and 
use graphics hardware to do Gouraud
interpolation:

1. Compute normals at the vertices.
2. Shade only the vertices.
3. Interpolate the resulting vertex colors.



15

Gouraud interpolation artifacts

Gouraud interpolation has significant limitations.

1. If the polygonal approximation is too coarse, 
we can miss specular highlights.

2. We will encounter Mach banding (derivative 
discontinuity enhanced by human eye).

This is what graphics hardware does by default.

A substantial improvement is to do…



16

Phong interpolation

To get an even smoother result with fewer artifacts, 
we can perform Phong interpolation.

Here’s how it works:

1. Compute normals at the vertices.
2. Interpolate normals and normalize.
3. Shade using the interpolated normals.



17

Old pipeline: Gouraud interpolation

→  trianglevi
1,vi

2,vi
3

Default fragment processing:

Vertex 
processor

Rasterizer

Fragment
processor

Primitive
assembler

vi ← project v to image
out cblinn-phong
out vi

   
c

blinn-phong
 shade with L,V,N,k

d
,k

s
,n

s

Default vertex processing:

color cblinn-phong
p



18

Vertex shader:
vi ← project v to image
out ne
out ve
out vi

Programmable pipeline: 
Phong-interpolated normals!

→  trianglev
i
1,v

i
2 ,v

i
3

Fragment shader:

Vertex 
processor

Rasterizer

Fragment
processor

Primitive
assembler



19

Texture mapping and the z-buffer

Method:

 Supply per-vertex texture coordinates
 Scan conversion is done in screen space, as usual
 Texture coordinates are interpolated, as usual
 Supply a uniform with the texture data
 Each pixel is colored by looking up the texture at 

the interpolated coordinates

Note:  Mapping is more complicated to handle 
perspective correctly! (OpenGL does this by default)



20

Rasterization vs Raycasting

Fundamental loop: For each pixel and triangle, determine if 
they intersect

• Observation: Adjacent pixels often hit the same triangle.
• In raycasting, you throw away this knowledge!
• In rasterization, you don’t even need to compute 

the intersection at interior pixels

• In raycasting, you accelerate by culling triangles, while in 
rasterization, you cull pixels instead

• Culling triangles requires an acceleration data 
structure storing the whole scene

• Traversing this data structure causes branching
• But, rasterization might do more unnecessary work

• Rasterization doesn’t naturally generalize to recursive 
(multi-bounce) effects like reflections and shadows

• There are plenty of hacks (as you’ll see for shadows)


