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Reading

Optional reading:

 Angel and Shreiner: 3.1, 3.7-3.11 
 Marschner and Shirley: 2.3, 2.4.1-2.4.4, 

6.1.1-6.1.4, 6.2.1, 6.3

Further reading:
 Angel, the rest of Chapter 3
 Foley, et al, Chapter 5.1-5.5.
 David F. Rogers and J. Alan Adams, Mathematical 

Elements for Computer Graphics, 2nd Ed., 
McGraw-Hill, New York, 1990, Chapter 2. 
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Geometric transformations

Geometric transformations will map points in one 
space to points in another: (x’, y’, z’) = f (x, y, z).

These transformations can be very simple, such as 
scaling each coordinate, or complex, such as non-
linear twists and bends.

We'll focus on transformations that can be 
represented easily with matrix operations.
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Vector representation

We can represent a point, p = (x, y), in the plane or p = (x, y, z)
in 3D space:

 as column vectors 

 as row vectors
x y





x
y













x
y
z

















x y z




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Canonical axes

x

y

z
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Vector length and dot products

u

v
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Vector cross products

u

v
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Representation, cont.

We can represent a 2-D transformation M by a matrix

If p is a column vector, M goes on the left:

If p is a row vector, MT goes on the right:

We will use column vectors.

a b
c d











p' Mp

x '
y '












 a b

c d









 x

y













p' pM T

x ' y '



 x y





a c
b d













9

Two-dimensional transformations

Here's all you get with a 2 x 2 transformation matrix M :

So:

We will develop some intimacy with the elements a, b, c, d…

x '
y '












 a b

c d











x
y













x '  ax by
y '  cx  dy
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Identity

Suppose we choose a = d = 1, b = c = 0:

 Gives the identity matrix:

 Doesn't move the points at all

1 0
0 1










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Scaling

Suppose we set b = c = 0, but let a and d take on any 
positive value:

 Gives a scaling matrix:

 Provides differential (non-uniform) scaling in x
and y:

a 0
0 d











x '  ax
y '  dy

2 0
0 2











1 2 0
0 2












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______________

Suppose we keep b = c = 0, but let either a or d go 
negative.

Examples:

1 0
0 1









 1 0

0 1










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____________

Now let's leave a = d = 1 and experiment with b . . .

The matrix

gives:

1 b
0 1











x '  x by
y '  y

1 1
0 1










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Effect on unit square

Let's see how a general 2 x 2 transformation M affects the 
unit square: 

a b
c d









 q r s t



 q' r' s' t'





a b
c d









 0 1 1 0

0 0 1 1









 0 a ab b

0 c c d d










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Effect on unit square, cont.

Observe:

 Origin invariant under M
 M can be determined just by knowing how the 

corners (1,0) and (0,1) are mapped
 a and d give x- and y-scaling
 b and c give x- and y-shearing
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Rotation

From our observations of the effect on the unit square, 
it should be easy to write down a matrix for “rotation 
about the origin”:

Thus,

1
0











0
1











M  R( ) 


















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Linear transformations

The unit square observations also tell us the 2x2 
matrix transformation implies that we are 
representing a point in a new coordinate system:

where u=[a c]T and v=[b d]T are vectors that define a 
new basis for a linear space.

The transformation to this new basis (a.k.a., change of 
basis) is a linear transformation.

p' Mp

 a b
c d











x
y













 u v





x
y













 x u y  v
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Limitations of the 2 x 2 matrix

A 2 x 2 linear transformation matrix allows

 Scaling
 Rotation
 Reflection
 Shearing

Q: What important operation does that leave out?
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Affine transformations

In order to incorporate the idea that both the basis 
and the origin can change, we augment the linear 
space u, v with an origin t.

We call u, v, and t (basis and origin) a frame for an
affine space.

Then, we can represent a change of frame as:

This change of frame is also known as an affine 
transformation.

How do we write an affine transformation with 
matrices?

p' x u y  v t
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Homogeneous coordinates

Idea is to loft the problem up into 3-space, adding a 
third component to every point:

Adding the third “w” component puts us in 
homogenous coordinates.

And then transform with a 3 x 3 matrix:

. . . gives translation!

x
y














x
y
1

















x '
y '
w '
















T (t)

x
y
1


















1 0 tx

0 1 ty

0 0 1



















x
y
1

















1 0 1
0 1 1 2
0 0 1
















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Anatomy of an affine matrix

The addition of translation to linear 
transformations gives us affine transformations.

In matrix form, 2D affine transformations always 
look like this:

2D affine transformations always have a bottom 
row of [0 0 1].

An “affine point” is a “linear point” with an added 
w-coordinate which is always 1:

Applying an affine transformation gives another 
affine point:

paff 
plin

1














x
y
1

















Mpaff 
Aplin  t

1













M 

a b tx

c d ty

0 0 1



















 A t
0 0 1














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Rotation about arbitrary points

1. Translate q to origin

2. Rotate

3. Translate back

Until now, we have only considered rotation about the 
origin.

With homogeneous coordinates, you can specify a rotation
by , about any point q = [qx qy]T with a matrix.  

Let’s do this with rotation and translation matrices of the 
form R( ) and T(t), respectively.
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Points and vectors
Vectors have an additional coordinate of w = 0.  Thus, a 
change of origin has no effect on vectors.

Q: What happens if we multiply a vector by an affine 
matrix?

These representations reflect some of the rules of affine 
operations on points and vectors:

One useful combination of affine operations is:

Q: What does this describe?

  
  

scalar vector + scalar vector
scalar point + scalar point

( )  oP t P tu


 





vector + vector
 scalar  vector
  point - point
 point + vector
 point + point
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Combinations of points

Note that we seem to have constructed a point by adding 
points together, which we said was illegal, but as long as 
they have coefficients that sum to one, it’s ok. 

More generally, a weighted sum of points Ai:

is an affine combination if:

It is a vector combination if:

And it is a convex combination if:

A convex combination of points will always lie in the 
convex hull of those points.

i  0
i1

n



i 1
i1

n

     and    i  0

i 1
i1

n


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Barycentric coordinates

A set of points can be used to create an affine frame.  
Consider a triangle ABC and a point P :

We can form a frame with an origin C and the vectors from 
C to the other vertices:

We can then write P in this affine coordinate frame:

The coordinates (, , ) are called the barycentric
coordinates of P relative to A, B, and C.

u  B A v C  A    t  A

P  uv t


A
B

C

P
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Computing barycentric coordinates
Writing out the barycentric combination of points 
leads to a linear system:

A cool result is that we can write the solution as:

which can be interpreted geometrically as:

Q: What does it mean for a barycentric coordinate to 
be negative?

      
Ax Bx Cx

Ay By Cy

1 1 1








































Px

Py

1



















  

 ABC  P       

Ax

Ay

1





















Bx

By

1





















Cx

Cy

1





















Px

Py

1



















 
(B P)2D (C  P)
(B A)2D (C  A)

     
(C  P)2D (A P)
(B A)2D (C  A)

     
(A P)2D (B P)
(B A)2D (C  A)

  SArea(PBC)
SArea(ABC)

          SArea(APC)
SArea(ABC)

          SArea(ABP)
SArea(ABC)

A
B

C

P
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Basic 3-D transformations: scaling

Some of the 3-D transformations are just like the 2-D 
ones.  

For example, scaling:

x '
y '
z '
1























sx 0 0 0

0 sy 0 0

0 0 sz 0

0 0 0 1





















x
y
z
1




















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Translation in 3D

x '
y '
z '
1























1 0 0 tx

0 1 0 ty

0 0 1 tz

0 0 0 1





















x
y
z
1




















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For any transformation, we can count its degrees of 
freedom – the number of independent (though not 
necessarily unique) parameters needed to specify the 
transformation.  

One way to count them is to add up all the apparently 
free variables and subtract the number of 
independent equations that constrain them.

How many degrees of freedom are there in an 
arbitrary 3D rotation?  

Rotation in 3D
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These are the rotations about the canonical axes:

A general rotation can be specified in terms of a 
product of these three matrices.  How else might 
you specify a rotation?

Rotation in 3D (cont’d)

( )
1 0 0 0
0 cos sin 0
0 sin cos 0
0 0 0 1

( )
cos 0 sin 0

0 1 0 0
sin 0 cos 0
0 0 0 1

( )
cos sin 0 0
sin cos 0 0

0 0 1 0
0 0 0 1



 
 


 

 


 
 

  
 
 
 
 
 
 

  
 
 
 
 
 
 

  
 

 
 
 
 
 

x

y

z

R

R

R

Ry

Use right hand rule

Rz
Rx
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Shearing in 3D

Shearing is also more complicated.  Here is one 
example:

We call this a shear with respect to the x-z plane.

x '
y '
z '
1























1 b 0 0
0 1 0 0
0 0 1 0
0 0 0 1



















x
y
z
1




















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Preservation of affine combinations

A transformation F is an affine transformation if it 
preserves affine combinations:

where the Ai are points, and:

Clearly, the matrix form of F has this property.

One special example is a matrix that drops a 
dimension.   For example:

This transformation, known as an orthographic 
projection is an affine transformation.

We’ll use this fact later…

i 1
i1

n



1 0 0 0
0 1 0 0
0 0 0 1

















x
y
z
1




















x
y
1
















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Properties of affine transformations

Here are some useful properties of affine 
transformations: 

 Lines map to lines
 Parallel lines remain parallel
 Midpoints map to midpoints (in fact, ratios are 

always preserved)

  ratio
s

t

pq p'q'

qr q'r'


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Summary

What to take away from this lecture:

 All the names in boldface.
 How points and transformations are represented.
 How to compute lengths, dot products, and cross 

products of vectors, and what their geometrical 
meanings are.

 What all the elements of a 2 x 2 transformation 
matrix do and how these generalize to 3 x 3 
transformations.

 What homogeneous coordinates are and how 
they work for affine transformations.

 How to concatenate transformations.
 The mathematical properties of affine 

transformations. 


