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Reading

Required:

 Marschner and Shirley, Section 13.4 (online 
handout)

 Pharr, Jakob, and Humphreys, Physically Based 
Ray Tracing: From Theory to Implementation, 
Chapter 13 (online handout)

Further reading:

 A. Glassner.  An Introduction to Ray Tracing.  
Academic Press, 1989. [In the lab.]

 Robert L. Cook, Thomas Porter, Loren 
Carpenter.
“Distributed Ray Tracing.”  Computer Graphics 
(Proceedings of SIGGRAPH 84). 18 (3). pp. 137-
145. 1984.

 James T. Kajiya. “The Rendering Equation.”  
Computer Graphics (Proceedings of SIGGRAPH 
86). 20 (4). pp. 143-150. 1986.
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Aliasing

Ray tracing is a form of sampling and can suffer from 
annoying visual artifacts... 

Consider a continuous function (x).  Now sample it at 
intervals  to give [i] = quantize[(i )].

Q: How well does [i] approximate (x)?

Consider sampling a sinusoid:

In this case, the sinusoid is reasonably well 
approximated by the samples.
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Aliasing (con’t)

Now consider sampling a higher frequency sinusoid

We get the exact same samples, so we seem to be 
approximating the first lower frequency sinusoid 
again.

We say that, after sampling, the higher frequency 
sinusoid has taken on a new “alias”, i.e., changed its 
identity to be a lower frequency sinusoid.
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Aliasing and anti-aliasing in rendering

One of the most common rendering artifacts is the 
“jaggies”.  Consider rendering a white polygon against 
a black background:

We would instead like to get a smoother transition:

Anti-aliasing is the process of removing high 
frequencies before they cause aliasing.

In a renderer, computing the average color within a 
pixel is a good way to anti-alias.  How exactly do we 
compute the average color?
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Antialiasing in a ray tracer

We would like to compute the average intensity in the 
neighborhood of each pixel. 

When casting one ray per pixel, we are likely to have 
aliasing artifacts.

To improve matters, we can cast more than one ray 
per pixel and average the result.

A.k.a., super-sampling and averaging down.
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Antialiasing by adaptive sampling

Casting many rays per pixel can be unnecessarily 
costly.  If there are no rapid changes in intensity at the 
pixel, maybe only a few samples are needed.

Solution: adaptive sampling.

Q: When do we decide to cast more rays in a particular 
area?
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Gloss and translucency

The mirror-like form of reflection, when used to 
approximate glossy surfaces, introduces a kind of 
aliasing, because we are under-sampling reflection 
(and refraction).

For example:

Distributing rays over reflection directions gives:
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Distributing rays over light source area gives:

Soft shadows
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Depth of field

To simulate a camera, we can model the refraction of 
light through a lens.  This will give us a “depth of field” 
effect: objects close to the in-focus plane are sharp, and 
the rest is blurry.
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Depth of field (cont’d)

This is really similar to the pinhole camera model:

But now:

 Put the image plane at the depth you want to be in focus.
 Treat the aperture as multiple COPs (samples across the 

aperture).
 For each pixel, trace multiple viewing/primary rays for 

each COP and average the results.
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Motion blur

Distributing rays over time gives:

How can we use super-sampling and averaging down 
to get motion blur?
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Consider Whitted vs. a brute force approach with anti-aliasing, depth of field, area lights, gloss…

Asymptotic # of intersection tests =

For m =1,000, k = a = s = r = 8, n = 1,000,000,            , d = 8 … very expensive!!

Whitted
ray tracing

Brute force,
advanced 

ray tracing

Naively improving Whitted ray tracing

ℓ  4

Advanced ray tracing has:

 m x m pixels
 k x k supersampling
 a x a sampling of 

camera aperture
 n primitives
 area light sources
 s x s sampling of each 

area light source
 r x r rays cast recursively 

per intersection 
(gloss/translucency)

 d is average ray path 
length 

ℓ
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Penumbra revisited

Let’s revisit the area light source…

We can trace a ray from the viewer through a pixel, 
but now when we hit a surface, we cast rays to 
samples on the area light source.
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Penumbra revisited

We should anti-alias to get best looking results.  

Whoa, this is a lot of rays…just for one pixel!!
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Penumbra revisited

We can get a similar result with much less computation:
 Choose random location within a pixel, trace ray.
 At first intersection, choose random location on area 

light source and trace shadow ray.
 Continue recursion as with Whitted, but always choose 

random location on area light for shadow ray.
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Monte Carlo Path Tracing vs. Brute Force

We can generalize this idea to do random sampling for 
each viewing ray, shadow ray, reflected ray, etc.  This 
approach is called Monte Carlo Path Tracing (MCPT).

Monte Carlo
path tracing

Brute force,
advanced 

ray tracing
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MCPT vs. Whitted

Q: For a fixed number of rays per pixel, does MCPT 
trace more total rays than Whitted?

Q: Does MCPT give the same answer every time?

Whitted
ray tracing

Monte Carlo
path tracing
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Ray tracing as integration

Ray tracing amounts to estimating a multi-
dimensional integral at each pixel.  The integration is 
over:

 the pixel area
 the aperture
 each light source
 all diffuse/glossy reflections (recursively)

Integration over diffuse/glossy reflections is at the 
heart of rendering.  Recall that the BRDF tells us how 
incoming light will scatter into outgoing directions:

To compute the total light for an outgoing direction, 
we integrate all incoming directions:

fr (in,out )in

I(out )  I(in ) fr (in,out ) in N d
H
 in
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Approximating integrals
Let’s say we want to compute the integral of a 
function:

If f(x) is not known analytically (or is not easy to 
integrate), but can be readily evaluated, then we can 
approximate the integral by sampling.

Our approximate integral value is then something like:

where we have sampled N times at spacing x.

Evaluating an integral in this manner is called 
quadrature.

Q: How many samples do we need if we have integrals 
over d dimensions, and we sample N times in each 
dimension?

F  f (x)dx
a

b



F  f (ix)x
i1

N


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Approximating integrals (cont’d)

We can also do uneven sampling:

Our approximate integral value is then something like:

where we have sampled N times at variable spacing xi.

We can think of the xi as weights on the samples.  

Q: Which xi should we pick?

Q: When the xi are more closely spaced, do they get 
larger or smaller weight?

F  f (xi )xi
i1

N


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A stochastic approach
A good approach to distributing samples unevenly 
across many dimensions is to do so stochastically.

Quick review first…  For 1D, let’s say the position in x is 
a random variable X, which is distributed according to 
p(x), a probability density function (non-negative, 
integrates to unity).  Then:

 = E[X] =

2 = V[X] =

Suppose we don’t know p(x), but we can collect N
samples {Xi} drawn from p(x).  

How would we estimate the mean from the samples?

Suppose we repeated the process, drawing N samples 
and re-computing the mean.  Will we get the exact 
same answer?
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Sample mean
This sample mean is itself a new random variable:

where each of the Xi are independent with pdf p(x).  

Ideally, the expected value of this random variable 
actually is the expected value of the original one, X.

It’s easy to show that:

E[cX] = cE[X] 

E[X+Y] = E[X] + E[Y] 

where  X and Y are independent random variables.

The {Xi} are independent and identically 
distributed (i.i.d.) leading to expected sample mean:

1
N

Xi
i1

N



E 1
N

Xi
i1

N











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Sample variance
We noted that the sample mean does not give the 
same answer every time – it’s a random variable.

How much does the answer vary?  We’ll compute its 
variance.

It’s easy to show that:

V[cX] = c2 V[X] 

V[X+Y] = V[X] + V[Y] 

where  X and Y are independent random variables.

For i.i.d. variables {Xi}, we can now compute the 
variance of the sample mean:

What parameter can we control to reduce the 
variance?

How does standard deviation change when adjusting 
that parameter?

V 1
N

Xi
i1

N











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Stochastic sampling as integration
Let’s return to the integral we wish to compute:

Suppose now we use a uniform pdf to sample the 
range [a, b]:

We can then compute the mean of these samples:

Note that a function of a random variable is itself a 
random variable.  

So, we have created yet another random variable, 
which is an average of random variables { f (Xi) }.

What is its expected value…?

F  f (x)dx
a

b



1
N

f Xi 
i1

N


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Stochastic sampling as integration (cont’d)
We can compute the expected value as:

But what is the expected value of  f (X) where X is 
drawn from a uniform pdf over [a, b]:

Then we have:

The variance of our integral estimate is:

E 1
N

f Xi 
i1

N












E f X 



 f (x) p(x)dx







p(x)          if a  x  b
else







V 1
N

f Xi 
i1

N











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Monte Carlo integration

Suppose we are integrating a function that has large 
values in some places but not others.  

How do we get more samples in the large value areas?

Remember before that if our samples are more closely 
spaced, they should receive less weight.  What 
function tells us how close spaced samples will be?

We can now estimate the integral as:

This is called Monte Carlo integration.
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Monte Carlo integration (cont’d)

But is this sample mean really approximating the 
integral?  Let’s compute its expected value:

Now we need the expected value of f (X)/p(X):

Bingo!

We can compute the variance of our integral estimator:

We want a low variance estimate.  What variables and/or  
functions are under our control here?

E 1
N

f (Xi )
p(Xi )i1

N












E f X  / p(X )





V 1
N

f (Xi )
p(Xi )i1

N











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Importance sampling

To reduce variance, we can now choose p(x) to sample 
f (x) well.  

If f (x) is non-negative, the optimal choice would be to 
set p(x) ~ f (x).  

Why don’t we just do that?

Alternatively, we can use heuristics to guess where        
f (x) will be large and choose p(x) based on those 
heuristics.  This approach is called importance 
sampling.
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Stratified sampling

Another source of variance is “bad luck”.  Consider a 
uniform sampling of our function, where samples may 
clump:

To reduce this problem, we can apply stratified 
sampling.

The idea is that, given your probability function:

 You can break it up into bins of equal probability 
area (i.e., equal likelihood).

 Then choose a sample from each bin.
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Importance sampling of reflection
For a given BRDF:

again the surface reflection equation is:

Without importance sampling:

 Cast a ray in a (uniformly) random direction
 Weight the result by

With importance sampling:

 Cast a ray in a direction drawn from a distribution 
p(in) that is large where the BRDF is large.

 Weight the ray by:

Ideally, the distribution is proportional to the BRDF:

See Pharr handout for cosine weighted sampling of 
the hemisphere, very useful for diffuse reflection.

fr (in,out )out

I(out )  I(in ) fr (in,out ) in N d
H
 in

p in  ~ fr (in,out ) in N 

fr (in,out ) in N 

   ( , /)in out in inrf p   N



32100 rays/pixel without importance sampling



33100 rays/pixel with importance sampling



34200 rays/pixel without importance sampling



35900 rays/pixel with importance sampling
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Penumbra revisited: clumped samples
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Penumbra: stratified sampling

Stratified sampling gives a better distribution of samples:

 Break pixel and light source into regions.  
 Choose random locations within each region.
 Trace rays through/to those jittered locations.
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Stratified sampling of a 2D pixel

Here we see pure uniform vs. stratified sampling over a 
2D pixel  (here 16 rays/pixel):

The stratified pattern on the right is also sometimes 
called a jittered sampling pattern.

Similar grids can be constructed over the camera 
aperture, light sources, and diffuse/glossy reflection 
directions.

Random Stratified



3925 rays/pixel without stratified sampling



4025 rays/pixel with stratified sampling



4164 rays/pixel without stratified sampling



42400 rays/pixel with stratified sampling


