
Toturial for Fltk Impressionist

1 Fltk

FLTK (pronounced "fulltick") is a LGPL'd C++ graphical user interface
toolkit for X (UNIX), OpenGL, and WIN32 (Microsoft Windows NT 4.0,
95, or 98). It is currently maintained by a small group of developers across
the world. As most GUI toolkits, it is based on event-driven programming
paradigm.

1.1 Hello, World!

Let's start from the standard �rst program, hello.exe, which outputs "Hello,
World". Figure 1 shows the snapshot of hello.exe.

Listing 1 - "hello.cxx"

1 #include <FL/Fl .H>
2 #include <FL/Fl Window .H>
3 #include <FL/Fl Box .H>
4

5 int main (int argc , char �� argv) f
6 Fl Window �window = new Fl Window (3 0 0 , 1 8 0) ;
7 Fl Box � box = new Fl Box (FL UP BOX, 2 0 , 4 0 , 2 6 0 , 1 0 0 , " He l l o , World ! ") ;
8 box�>l a b e l f o n t (FL BOLD+FL ITALIC) ;
9 box�>l a b e l s i z e (3 6) ;

10 box�>l a b e l t yp e (FL SHADOWLABEL) ;
11 window�>end () ;
12 window�>show (argc , argv) ;
13 return Fl : : run () ;
14 g

In most of your tk programs, you need to include at least Fl.H and
Fl Window.H. Besides, you also need to include the header �les for the wid-
gets you plan to use in the program. For example, we include <Fl Box.H>
in the line 3 because we will use Fl Box in the program.

1

Figure 1: The snapshot of hello.exe

In line 6, we create a Fl Window, window, which is 300-pixel in the width
and 180-pixel in the height. In line 11, we call window->end() to �nish the
design for window. Note that all the widgets declared between line 6 and line
11 are belonged to window. Here, we only declare a Fl Box widget with the
string "Hello, World!". To know how to set the attribute of the widget, you
can look up the widget reference in the Fltk programming manual. Click on
Fl Box in the reference, you will see the description and methods for it as
shown in �gure 2. However, it is not all. At the top of the reference page,
you can �nd that Fl Box is a derived class of Fl Widget. So, it will inherit
all the methods from Fl Widget. Click on Fl Widget on the top, you can
see those methods, such as labelfront, labelsize and labeltype, used in the
sample program.

After �nishing the design for the window, we call window->show to dis-
play it (line 12). Line 13 will have the program enter into the in�nite message-
handle loop until you close the window.

1.2 A More Complicated Example

In this example, we will add a menu, a slider and a button into the window.
We will add some boring callback functions, too. It doesn't do anything
useful, but you get the idea. Basically speaking, this example creates a
dialog to adjust the width of the main window. Besides, there are some
trivial functions implemented for demonstrating how to program in tk.

2

Contents Previous Next

class Fl_Box

Class Hierarchy

Fl_Widget
 |
 +----Fl_Box

Include Files

#include <FL/Fl_Box.H>

Description

This widget simply draws its box, and possibly it's label. Putting it before some other widgets and making
it big enough to surround them will let you draw a frame around them.

Methods

Fl_Box
~Fl_Box

Fl_Box::Fl_Box(int x, int y, int w, int h, const char * = 0)
Fl_Box::Fl_Box(Fl_Boxtype b, int x, int y, int w, int h, const char *)

The first constructor sets box() to FL_NO_BOX, which means it is invisible. However such widgets are
useful as placeholders or Fl_Group::resizable() values. To change the box to something visible, use
box(n).

The second form of the constructor sets the box to the specified box type.

Fl_Box::~Fl_Box(void)

The destructor removes the box.

Contents Previous Next

1 of 1 1/17/00 11:51 AM

FLTK 1.0.4 Programming Manual file:///D|/ta/557/tutorial/Fl_Box.html

Figure 2: The description for Fl Box in the reference manual

3

Listing 2 - "tk ui.cpp"
1 #include < s t d i o . h>
2

3 #include <FL/Fl .H>
4 #include <FL/Fl Window .H>
5 #include <FL/Fl Menu Bar .H>
6 #include <FL/ F l Va lu e S l i d e r .H>
7 #include <FL/Fl Button .H>
8 #include <FL/Fl Box .H>
9

10 #include <FL/ f l f i l e c h o o s e r .H> // FLTK f i l e choose r
11 #include <FL/ f l a s k . h> // FLTK message boxes
12

13 Fl Window � window ;
14 Fl Window � dlg ;
15 Fl Menu Bar � menubar ;
16 F l S l i d e r � s l i d e r ;
17 Fl Button � button ;
18

19 void c b f i l e s e l e c t (Fl Widget �o , void�v) f
20 char msg [2 5 6] ;
21 char � new f i l e=f l f i l e c h o o s e r ("Choose a f i l e " , "� . cpp" , NULL) ;
22

23 i f (n ew f i l e !=NULL) f
24 s p r i n t f (msg , "You choose %s" , n ew f i l e) ;
25 f l me s s ag e (msg) ;
26 g
27 g
28

29 void cb open d ia log (Fl Widget �o , void�v) f
30 dlg�>show () ;
31 g
32

33 void cb pass (Fl Widget �o , void�v) f
34 f l me s s ag e ((char �) v) ;
35 g
36

37 void cb qu i t (Fl Widget �o , void�v) f
38 dlg�>hide () ;
39 window�>hide () ;
40 g
41

42 void cb about () f
43 f l me s s ag e ("This i s about . ") ;
44 g
45

46 void c b s l i d e s (Fl Widget �o , void�v) f
47 window�>r e s i z e (window�>x () , window�>y () ,
48 10�(int) (((F l S l i d e r �) o)�>value ()) , window�>h ()) ;
49 menubar�>r e s i z e (0 , 0 , 1 0 � (int) (((F l S l i d e r �) o)�>value ()) , 2 5) ;
50 g
51

52 void c b r e s e t (Fl Widget �o , void�v) f
53 s l i d e r�>value (2 0) ;
54 c b s l i d e s (s l i d e r , (void �) 2 0) ;
55 g
56

4

57 char f l t k []=" f l t k " ; char opengl []=" opengl " ;
58

59 Fl Menu Item menuitems [] = f
60 f "&F i l e " , 0 , 0 , 0 , FL SUBMENU g ,
61 f " F i l e &S e l e c t o r . . . " , FL ALT + ' s ' , (F l Ca l lback �) c b f i l e s e l e c t g ,
62 f "Open &Dialog " , FL ALT + 'd ' , (F l Ca l lback �) cb open d ia log ,
63 0 , FL MENU DIVIDER g ,
64 f "&Fltk " , FL ALT + ' f ' , (F l Ca l lback �) cb pas s , (void �) f l t k g ,
65 f "&OpenGl" , FL ALT + ' o ' , (F l Ca l lback �) cb pas s , (void �) opengl ,
66 FL MENU DIVIDER g ,
67 f "&Quit" , FL ALT + ' q ' , (F l Ca l lback �) cb qu i t g ,
68 f 0 g ,
69

70 f "&Help" , 0 , 0 , 0 , FL SUBMENU g ,
71 f "&About" , FL ALT + ' a ' , (F l Ca l lback �) cb about g ,
72 f 0 g ,
73

74 f 0 g
75 g ;
76

77 int main (int argc , char �� argv) f
78 window = new Fl Window (3 0 0 , 3 0 0 , 2 0 0 , 2 0 0 , "Foo") ;
79 // i n s t a l l menu bar
80 menubar = new Fl Menu Bar (0 , 0 , 2 0 0 , 2 5) ;
81 menubar�>menu(menuitems) ;
82

83 window�>c a l l b a ck (cb qu i t) ;
84 window�>when(FL HIDE) ;
85 window�>end () ;
86

87 dlg = new Fl Window (3 0 0 , 5 3 0 , 2 0 0 , 7 0 , " d i a l o g ") ;
88 // i n s t a l l s l i d e r s i z e
89 s l i d e r = new F l Va lu e S l i d e r (0 , 1 0 , 1 5 0 , 2 0 , " S l i d e r ") ;
90 s l i d e r�>type (FL HOR NICE SLIDER) ;
91 s l i d e r�>l a b e l f o n t (FL COURIER) ;
92 s l i d e r�>l a b e l s i z e (1 2) ;
93 s l i d e r�>minimum(1) ;
94 s l i d e r�>maximum(4 0) ;
95 s l i d e r�>s t ep (1) ;
96 s l i d e r�>value (2 0) ; // s e t i t s value
97 s l i d e r�>a l i gn (FL ALIGN RIGHT) ;
98 s l i d e r�>c a l l b a ck (c b s l i d e s) ;
99

100 Fl Button � button = new Fl Button (6 0 , 4 0 , 8 0 , 2 0 , "Reset ") ;
101 button�>c a l l b a ck (c b r e s e t) ;
102

103 dlg�>end () ;
104

105 window�>show (argc , argv) ;
106

107 return Fl : : run () ;
108 g

In line 3-7, we include all the header �les for the widgets used in the exam-
ple. In line 10 and 11, we include the other two include �les, �le chooser.h

5

and ask.h. These two �les de�ne some global functions. The �rst one is
for �le �lter and selector and the second one is for the popup message box.

The design of an event-driven program is usually divided into two steps:
to design the user interface and then to add in the callback functions. The
user interface of the sample program looks like:

Corresponding to the design of the menubar, we have the menuitems array
de�ned in line 63-79. For each menu entry, we declare its caption, shortcut
and callback function sequentially. When there is an event occurring on the
widget, the registered callback function of the widget for that event will be
called. The prototype for Fl Callback in Fl Widget.H is

typedef void (Fl Callback)(Fl Widget*, void*);

Now, let's look at these calback functions for menu entries one by one.

6

Figure 3: The snapshot of �le selection dialog

For "File Selector", the callback function is cb �le select. It will call
 �le Chooser(char *title, char *match, char *default) to popup a �le selec-
tion dialog. It will return the �le name chosen or NULL if it is cancelled. If
the user do choose some �le, the program will pop up a message window by
calling message(char *msg) to display the chosen �le name.

For "tk" and "opengl" menu entries, I just demonstrate how to pass
parameters into the callback function. They share the same callback function,
cb pass, but with the di�erent parameters. The message box will prompt the
passing parameters appropriately.

For "Quit", I just call window->hide() to destroy the window. We destroy
the dialog by calling hide() as well. Since all windows are destroyed, the
Fl:run() will return and it will terminate the program properly.

Now, let's come back to the layout of the windows. In this example, we
have two windows, the main window and the dialog window. They are the
same for tk and we just distinguish them conceptually. In line 78-85, we
set the layout for the main window. We �rst install a menubar in line 80-81.
In line 83-84, we install a callback function for the event FL HIDE. Or, if
the user terminates the program by pressing ESC, then the dialog won't be
terminated since no callback function for that event is registered. We do this
to force the conceptual child window to terminate when its parent window
terminates.

7

In the dialog, we have a slider and a button. The setting for them should
be quite obvious. When the position of the slider changes, the callback
function, cb slide, will be called. In this function, we will resize the window
and the menubar such that the width is 10 times of the value in the slider.
The member function, x(), y(), w() and h(), will return the current position
and dimension for that widget. resize() will change the size and position of
the widget.

For the reset button, we reset the value of the slider back to 20 and call
cb slide to change the size of the window consistently. Note that overloaded
function, value(), is used both to set or read the value of the slider.

1.3 How to Learn More About The Widgets

The best way to learn what you can use and how to use them is to look at
the demo examples included in tk distribution. Run 'demo' and go through
the demos. When you �nd the widget you might want, go to its source. The
source is usually a single �le with less than 300 lines of code. You can also
read the reference manual to know more about the widgets.

8

2 OpenGL

OpenGL is a 2D/3D Graphics Library developed at Silicon Graphics Inc. It
has been widely used in computer graphics industry. It is a must to work in
this �eld. The best book for learning OpenGL is the OpenGL Programming
Guide, Second Edition. We have several Copies of this book available in
Sieg 228. You can also look at http://www.opengl.org for more information.
If you are working on NT, MSDN also includes the reference to OpenGL
functions1.

OpenGL is a state machine. It will keep various states, such as the
drawing color, point size, line width, bu�er to write and so on. Those states
will keep the same until you change them explicitly. Many state variables are
switched on or o� by glEnable() or glDisable() commands. For example, you
can turn o� depth test by issuing glDisable(GL DEPTH TEST). Besides,
you will need to turn on the blend function by calling glEnable(GL BLEND)
to have alpha blending e�ect.

2.1 OpenGL Conventions

All the functions in the OpenGL library have names beginning with "gl".
De�ned constants have names beginning with "GL ".

OpenGL has its own de�nitions for variable types. They are simply re-
de�nitions of the basic types; GLint is simply an int. It is better to use these
de�nitions when you program in OpenGL.

To overcome the lack of overload functions, OpenGL use the following
convention for a family of procedures with the same function but di�erent
arguments. The ends of the names for these functions work as the tags to
indicate the type of arguments. For instance, glColor*() refers to any of
the 32 functions available within OpenGL for setting the current color, for
example,

� glColor3f(GLoat, GLoat, GLoat) -Takes 3 oats.

� glColor4d(GLdouble, GLdouble, GLdouble, GLdouble) - Takes 4 dou-
bles (the fourth is the alpha value)

1the material in this section is adapted from the previous tutorials for CSE457

9

Figure 4: OpenGL primitives

� glColor3ubv(GLubyte*) - Takes a vector (or array) containing 3 un-
signed bytes.

2.2 OpenGL Primitives

We will use OpenGL in the Impressionist program to draw the various brush
strokes. Figure 4 nicely illustrates the primitives and the arrangement for
the vertices in OpenGL.

The typical calling sequence for drawing a primitive looks like:

g lCo l o r 4 f (red , green , b lue , alpha) ;
g lBegin (GL LINE STRIP) ;

g lVe r t ex2 i (Ax , Ay) ;
g lVe r t ex2 i (Bx , By) ;
g lVe r t ex2 i (Cx , Cy) ;
g lVe r t ex2 i (Ax , Ay) ;

glEnd () ;
g lF lush ()

glColor*() speci�es the color in which to draw primitive(s). glBegin() and
glEnd() delimit the vertices of a primitive. The assignment of the vertices to
the primitives is illustrated in �gure 4 . glVertex*() speci�es the coordinate

10

of the vertices. Finally, glFlush() tells OpenGL to draw the primitives now.

2.3 Basic OpenGL Transformations

Recall that OpenGL is basically a state machine. For many aspects of it,
you set up certain parameters, and until you change them, GL will use those
parameters for everything it draws.

You have probably already seen how this is used for things like object color
(via glColor) and drawing mode (via glBegin / glEnd). However, there are
also state variables for things like position (accomplished via "translation",
or shifting) and direction (accomplished via rotation).

For example, you can call glRotate* to set the rotation state. If you tell
OpenGL to rotate 45 degrees around the z axis (with glRotate3f(45, 0.0,
0.0, 1.0)), then everything you draw will be rotated 45 degrees before it's
drawn to the screen. This is a quick and easy way of changing the location
and orientation of an object.

So how does this apply to Impressionist? Recall that you'll be drawing
various brush strokes on a digital canvas, each at a di�erent position and
in a di�erent direction. By setting the GL state variables for position and
orientation before drawing your brush, you can use the same code regardless
of the brush's position or orientation. The stroke will automatically be drawn
at the correct position and in the correct direction! Of course, you can do
this by yourself. And, sometimes, you have to do it by yourself, for example,
to clip lines by edges.

Here are the OpenGL calls needed to do some simple image transforma-
tions.

1. Choosing the right matrix: There are several matrices in OpenGL.
The projection matrix is used to control the camera position, and the
modelview matrix is used to control drawing. We want to use the
modelview matrix, so we need to explicitly tell that to OpenGL with a
call to glMatrixMode:

glMatrixMode(GL MODELVIEW);

2. Pushing/Popping Matrices: Image transformations are accomplished
using matrices. A series of matrices are multiplied to produce a given

11

image transformation. Without going into too much detail, let's just
say that you'll want to save your current transformation matrix ("push"
it onto a matrix stack) before doing your brush-speci�c translation/rotation,
and restore the original matrix ("pop" it o� the matrix stack) when
you're done with that brush stroke. If you are not sure what already
happened in the matrix stack, you can call glLoadIdentity() to clear
the currently modi�able matrix for future transformation.

Here are the calls you need to use.

glPushMatrix () ;

<&<Do the t r a n s l a t i o n , r o t a t i on>>
<&<Draw the brush s t r ok e>>

glPopMatrix () ;

For translation, if want to "translate" your origin to that position. Here
is the call you use in OpenGL to do 2D translation:

glTranslate*(startX, startY, 0.0);

(Note: the * is replaced by a letter that depends on the type of the
parameters you pass.)

Here is the OpenGL call you'll want to use for rotation:

glRotate*(angle, 0.0, 0.0, 1.0);

(Note: we use 0.0, 0.0, 1.0 because we want to rotate around the z-axis.)

2.4 Manipulation of Frame Bu�er

To fast save and restore the canvas, we use some frame bu�er manipulation
functions provided by OpenGL. They are used to fast read out/write in the
frame bu�er to/from a block of memory.

glReadPixels() and glWritePixels() are used read/write a block of pixels
from/to the frame bu�er. Before you call them, you need to specify several
things:

� glReadBu�er/glWriteBu�er: to specify which bu�er you will work on.

� glPixelStore*: to specify how pixels are arranged

� glRasterPos*: set the start point for pixel write operations

12

3 Fltk+OpenGL

In this section, we will introduce how to use OpenGL in tk. The most
convenient way is to subclass Fl Gl Window. The only restriction is that
you can only invoke OpenGL drawing functions in draw(). Whenever you
want to update the display, call redraw() and tk will call draw() later. Since
all the drawing functions must be called within draw(), you need to have some
mechanism to inform draw() what it should do. In the skeleton code, we set
some variables, isAnEvent and eventToDo, for this purpose. The better way
may be to maintain a message queue for it?

3.1 Make a subclass of Fl Gl window

To make a subclass of Fl Gl Window, you must provide 2:

� A class de�nition

� A draw() method

� A handle() method

3.1.1 De�ning the Subclass

To de�ne the subclass you just subclass the Fl Gl Window class:

class MyGLWindow : public Fl Gl Window f
void draw () ;
int handle (int) ;

public :
MyGLWindow(int X, int Y, int W, int H, const char �L)

: Fl Gl Window(X, Y, W, H, L) fg
g ;

3.1.2 The draw() Method

void MyGLWindow : : draw () f
i f (! v a l i d ()) f

// whenever the window s i z e i s changed , va l i d w i l l be turned o f f
// and turned on a f t e r the f i r s t c a l l to draw ()
// you need to s e t up p r o j e c t i o n , v iewpoint . . .
// get the dimension o f the window from w() , h ()

g
// put your drawing ope r a t i on s here

g

2the material in this section comes from chap. 9 in Fltk Programming manual

13

3.1.3 The handle() Method

The handle() method is used to handle mouse and keyboard events for the
window. Note that you can't call any drawing functions within handle() since
the OpenGL context is not set up yet! Call redraw() and let draw() do the
work.
int MyGLWindow : : handle (int event) f

switch (event) f
case FL PUSH :

coord . x = Fl : : event x () ;
coord . y = Fl : : event y () ;
i f (Fl : : event button ()>1)

eventToDo=RIGHTMOUSEDOWN;
else

eventToDo=LEFTMOUSEDOWN;
isAnEvent=1;
redraw () ;

return 1 ;
case FL DRAG:

coord . x = Fl : : event x () ;
coord . y = Fl : : event y () ;
i f (Fl : : event button ()>1)

eventToDo=RIGHTMOUSEDRAG;
else

eventToDo=LEFTMOUSE DRAG;
isAnEvent=1;
redraw () ;

return 1 ;
case FL RELEASE:

coord . x = Fl : : event x () ;
coord . y = Fl : : event y () ;
i f (Fl : : event button ()>1)

eventToDo=RIGHT MOUSE UP;
else

eventToDo=LEFT MOUSE UP;
isAnEvent=1;

return 1 ;
default :

// t e l l FLTK that I don ' t understand other event s
return 0 ;

g
g

3.2 An Example

In this section, we will present a extremely simpli�ed impressionist program.
This program has a canvas of the size 300x300. When user click the left
mouse button, it will draw a 20x20 square at the clicked position. Clicking
right mouse button will pick up the drawing color among red, green and
blue sequentially. If the left button is clicked outside the canvas, the square

14

Figure 5: The snapshot of tk GL example

will still be drawn but they will disappear when the window is resized. Any
drawing within the canvas is guaranteed to be kept. Anything outside is not.
Figure 5 is the snapshot for the sample program.

In line 6, we �rst create a Fl Gl Window as described in the previous
section. We call window->resizable(window) in line 8 such that the window
can be resized by the user. You should be able to understand the content
of MyGLWindow.h now. In class MyGLWindow, we maintain the variables,
windowWidth and windowHeight, for the dimension of the window. The
variables, drawWidth and drawHeight, are for the dimension of the canvas.
Figure 6 illustrates the relationship between those variables and the dimen-
sion we used to save and restore. The other things should be quite obvious
to you now.

For the mysterious tk draw() function, I still don't quite know how it is
implemented. However, here is the way I think it works:

� It will set GL content for you before draw() is called.

� The default bu�er it draw is the back bu�er.

� It will automatically swap the bu�ers and make both bu�ers the same
as the back bu�er.

� When window is resized, that is, the frame bu�ers are destroyed and
recreated, all the content in the frame bu�ers is gone. It is why we
need to have a bu�er in the memory to keep the content of the canvas.

15

Figure 6: Illustration for drawWidth and windowWidth

Listing 3 - "main.cpp"

1 #include "MyGLWindow. h"
2

3 MyGLWindow �window ;
4

5 int main (int argc , char �� argv) f
6 window = new MyGLWindow(2 0 0 , 2 0 0 , 3 0 0 , 3 0 0 , "GL demo") ;
7

8 window�>r e s i z a b l e (window) ;
9

10 window�>show () ;
11

12 return Fl : : run () ;
13 g

Listing 4 - "MyGLWindow.h"

14 #ifndef MY GL WINDOW H
15 #define MY GL WINDOW H
16

17 #include <FL/Fl .H>
18 #include <FL/Fl Gl Window .H>
19 #include <FL/ g l . h>
20

21 class MyGLWindow : public Fl Gl Window f
22 void draw () ;
23 int handle (int) ;
24 public :
25 MyGLWindow(int X, int Y, int W, int H, const char �L) ;
26

27 void SaveCurrentContent () ;

16

28 void RestoreContent () ;
29

30 int windowWidth , windowHeight ;
31 int drawWidth , drawHeight ;
32

33 int mx, my;
34 int isAnEvent ;
35 int eventToDo ;
36

37 int curColor ;
38

39 unsigned char � buf , � b i t s t a r t ;
40 g ;
41

42 #endif

Listing 5 - "MyGLWindow.cpp"

43 #include "MyGLWindow. h"
44

45 #define LEFTMOUSEDOWN 1
46 #define RIGHTMOUSEDOWN 2
47

48 #ifndef WIN32
49 #define min(a , b) (((a)<(b)) ? (a) : (b))
50 #endif

51

52 MyGLWindow : :MyGLWindow(int X, int Y, int W, int H, const char �L)
53 : Fl Gl Window (X, Y, W, H, L)
54 f
55 windowWidth = drawWidth = W;
56 windowHeight = drawHeight = H;
57

58 buf = new unsigned char [W�H� 3] ;
59 memset (buf , 0 , W�H� 3) ;
60

61 curColor = 0 ;
62 g
63

64 stat ic GLubyte drawColor [3] [3] = f f 2 5 5 , 0 , 0 g , f 0 , 2 5 5 , 0 g , f 0 , 0 , 2 5 5 g g ;
65

66 void MyGLWindow : : draw () f
67 i f (! v a l i d ()) f
68 g lC learCo lo r (0 . 7 f , 0 . 7 f , 0 . 7 f , 1 . 0) ;
69

70 g lD i s ab l e (GL DEPTH TEST) ;
71

72 ortho () ;
73

74 g lC l e a r (GL COLOR BUFFER BIT) ; // c l e a r the window
75

76 windowWidth = w() ;
77 windowHeight = h () ;
78

79 int s ta r t row = drawHeight � min (drawHeight , windowHeight) ;
80 i f (s ta r t row < 0) s ta r t row = 0;

17

81 b i t s t a r t = buf + 3 � ((drawWidth � s ta r t row)) ;
82

83 RestoreContent () ;
84 g
85

86 i f (! isAnEvent) f
87 RestoreContent () ;
88 g else f
89 isAnEvent=0; // c l e a r i t a f t e r p r o c e s s i ng
90

91 switch (eventToDo) f
92 case LEFTMOUSEDOWN:
93

94 glColor3ubv (drawColor [curColor]) ;
95 glBegin (GL QUADS) ;
96 glVertex2d (mx, (windowHeight�my)) ;
97 glVertex2d (mx, (windowHeight�my)�20) ;
98 glVertex2d (mx+20, (windowHeight�my)�20) ;
99 glVertex2d (mx+20, (windowHeight�my)) ;
100 glEnd () ;
101

102 SaveCurrentContent () ;
103

104 break ;
105 case RIGHTMOUSEDOWN:
106 curColor=(curColor+1)%3;
107 break ;
108 g
109 g
110 g
111

112 int MyGLWindow : : handle (int event) f
113 switch (event) f
114 case FL PUSH :
115 mx = Fl : : event x () ;
116 my = Fl : : event y () ;
117 i f (Fl : : event button ()>1)
118 eventToDo=RIGHTMOUSEDOWN;
119 else

120 eventToDo=LEFTMOUSEDOWN;
121 isAnEvent=1;
122 redraw () ;
123 return 1 ;
124

125 default :
126 // t e l l FLTK that I don ' t understand other event s
127 return 0 ;
128 g
129

130 return 0 ;
131 g
132

133 void MyGLWindow : : SaveCurrentContent ()
134 f
135

136 glReadBuffer (GL BACK) ;
137

18

138 g lP i x e l S t o r e i (GL PACK ALIGNMENT , 1) ;
139 g lP i x e l S t o r e i (GL PACKROWLENGTH, drawWidth) ;
140

141 g lReadPixe l s (0 , windowHeight � min (drawHeight , windowHeight) ,
142 min(drawWidth , windowWidth) , min(drawHeight , windowHeight) ,
143 GL RGB, GL UNSIGNED BYTE, b i t s t a r t) ;
144 g
145

146 void MyGLWindow : : RestoreContent ()
147 f
148 glDrawBuffer (GL BACK) ;
149

150 g lRas te rPos2 i (0 , windowHeight � min(drawHeight , windowHeight)) ;
151 g lP i x e l S t o r e i (GL UNPACKALIGNMENT, 1) ;
152 g lP i x e l S t o r e i (GLUNPACKROWLENGTH, drawWidth) ;
153 glDrawPixe ls (min(drawWidth , windowWidth) , min(drawHeight , windowHeight) ,
154 GL RGB , GL UNSIGNED BYTE, b i t s t a r t) ;
155 g

4 Impressionist

4.1 The Structure of Impressionist

The ancestor of tk impressionist is MFC impressionist. Inherited from it,
this version also adapts the Document-View architecture. Figure 7 illustrates
the relationship among all these classes.

4.2 Some Tips

To enable alpha, you need to enable GL BLEND and set the blend function
properly using glBlendFunc().

To calculate the gradient of an image, you can follow the three steps:

1. Convert to gray-level image: use the formula, I=0.299R + 0.587G +
0.114B to convert RGB tuple into gray level.

2. Blur the gray-level image: use some �lter to remove the e�ect of the
noise and the unnecessary details.

3. Calculate gradient: you can use the following kernels to calculate the
gradient for x-direction and y-direction.

19

Figure 7: The Structure of Impressionist

1 0 -1 1 2 1
2 0 -2 0 0 0
1 0 -1 -1 -2 -1

or simply,

-1 1 -1
1

Note that the result is an un-normalized vector. You may want to
normalize it before you use it. Besides, the �rst pair of the kernel is
called Sobel �lter, you can use it to determine if a pixel is an edge
pixel. When the magnitude of the gradient is larger than the speci�ed
threshold, you can say that the pixel is an edge pixel.

20

jonsu
Rectangle

jonsu
Placed Image

