Surfaces of revolution

Surfaces of Revolution

Brian Curless

CSE 557

Fall 2014

Idea: rotate a 2D profile curve around an axis.
What kinds of shapes can you model this way?

Constructing surfaces of revolution

Given: A curve $C(u)$ in the $x y$-plane:
$C(u)=\left[\begin{array}{c}c_{x}(u) \\ c_{y}(u) \\ 0 \\ 1\end{array}\right]$

Let $R_{y}(\theta)$ be a rotation about the y-axis.
Find: A surface $S(u, v)$ which is $C(u)$ rotated about the y-axis, where $u, v \in[0,1]$.

Solution:

Constructing surfaces of revolution

We can sample in u and v to get a grid of points over the surface.

Suppose we sample:

- in u, to give $C[m]$ where $m \in[0 . . M-1]$
- in v, to give rotation angle $q[n]=2 \pi n / N$ where $n \in[0 . . N-1]$

We can now write the surface as:

Normals on a surface of revolution

Texture coordinates on a

surface of revolution

Triangle meshes

How should we generally represent triangle meshes?

