
1

Projections and Hardware Rendering

Brian Curless
CSE 557

Fall 2014

2

Reading

Required:

 Shirley, Ch. 7, Sec. 8.2, Ch. 18

Further reading:

 Foley, et al, Chapter 5.6 and Chapter 6
 David F. Rogers and J. Alan Adams,

Mathematical Elements for Computer Graphics,
2nd Ed., McGraw-Hill, New York, 1990, Chapter 2.

 I. E. Sutherland, R. F. Sproull, and R. A.
Schumacker, A characterization of ten hidden
surface algorithms, ACM Computing Surveys
6(1): 1-55, March 1974.

3

Going back to the pinhole camera…

For each pixel center Pij

 Send ray from eye point (COP), C, through Pij into
scene.

 Intersect ray with each object.
 Select nearest intersection.

Recall that the Trace project used, by default, the
pinhole camera model.

If we just consider finding out which surface point is
visible at each image pixel, then we are just ray
casting.

4

Warping space

A very different approach is to take the imaging setup:

then warp all of space so that all the rays are parallel
(and distant objects are smaller than closer objects):

and then just draw everything onto the image plane,
keeping track of what is in front:

5

3D Geometry Pipeline

Graphics hardware follows the “warping space”
approach.

Before being turned into pixels, a piece of geometry
goes through a number of transformations...

6

3D Geometry Pipeline (cont’d)

7

Projections

Projections transform points in n-space to m-space,
where m<n.

In 3-D, we map points from 3-space to the projection
plane (PP) (a.k.a., image plane) along projectors
(a.k.a., viewing rays) emanating from the center of
projection (COP):

There are two basic types of projections:

 Perspective – distance from COP to PP finite
 Parallel – distance from COP to PP infinite

8

Parallel projections

For parallel projections, we specify a direction of
projection (DOP) instead of a COP.

There are two types of parallel projections:

 Orthographic projection – DOP perpendicular
to PP

 Oblique projection – DOP not perpendicular to
PP

We can write orthographic projection onto the z=0
plane with a simple matrix.

Normally, we do not drop the z value right away. Why
not?

' 1 0 0 0

' 0 1 0 0

1 0 0 0 1
1

x
x

y
y

z

 
    
         
       

 

9

Z-buffer

The Z-buffer or depth buffer algorithm [Catmull, 1974]
can be used to determine which surface point is visible
at each pixel.

Here is pseudocode for the Z-buffer hidden surface
algorithm:

Q: What should FAR be set to?

for each pixel (i,j) do
Z-buffer [i,j]  FAR
Framebuffer[i,j]  <background color>

end for
for each triangle A do

for each pixel in A do
Compute depth z of A at (i,j)
if z > Z-buffer [i,j] then

Z-buffer [i,j]  z
Framebuffer[i,j]  color of A

end if
end for

end for

10

Rasterization

The process of filling in the pixels inside of a polygon is
called rasterization.

During rasterization, the z value can be computed
incrementally (fast!).

Curious fact:

 Described as the “brute-force image space
algorithm” by [SSS]

 Mentioned only in Appendix B of [SSS] as a
point of comparison for huge memories, but
written off as totally impractical.

Today, Z-buffers are commonly implemented in
hardware.

11

Properties of parallel projection

Properties of parallel projection:

 Not realistic looking
 Good for exact measurements
 Are actually a kind of affine transformation

• Parallel lines remain parallel
• Ratios are preserved
• Angles not (in general) preserved

 Most often used in CAD, architectural drawings,
etc., where taking exact measurement is
important

12

Derivation of perspective projection

Consider the projection of a point onto the projection
plane:

By similar triangles, we can compute how much the x
and y coordinates are scaled:

13

Homogeneous coordinates revisited

Remember how we said that affine transformations
work with the last coordinate always set to one.

What happens if the coordinate is not one?

We divide all the coordinates by w:

If w = 1, then nothing changes.

Sometimes we call this division step the “perspective
divide.”

/

/

/

1

x x w

y y w

z z w

w

   
   
   
   
   
   

14

Homogeneous coordinates and
perspective projection
Now we can re-write the perspective projection as a
matrix equation:

After division by w, we get:

Again, projection implies dropping the z coordinate to
give a 2D image, but we usually keep it around a little
while longer.

 
      
             
            

 

' 1 0 0 0

' 0 1 0 0

' 0 0 1/ 0 /
1

x
x x

y
y y

z
w d z d

  
   
       
    

 
  

'

'

1 1

d
x

zx
d

y y
z

15

Projective normalization

After applying the perspective transformation and
dividing by w, we are free to do a simple parallel
projection to get the 2D image.

What does this imply about the shape of things after
the perspective transformation + divide?

16

An alternative to specifying the distance from COP to
PP is to specify a viewing angle:

Given the height of the image h and , what is d?

What happens to d as  increases (while h is
constant)?

Viewing angle

17

Zoom and dolly

18

Vanishing points

What happens to two parallel lines that are not
parallel to the projection plane?

Think of train tracks receding into the horizon...

The equation for a line is:

After perspective transformation we get:

1 0

x x

y y

z z

p v

p v
t t

p v

   
   
      
   
   
   

l p v

'

'

' () /

x x

y y

z z

x p tv

y p tv

w p tv d

   
       
       

19

Vanishing points (cont'd)

Dividing by w:

Letting t go to infinity:

We get a point!

What happens to the line l = q + tv?

Each set of parallel lines intersect at a vanishing point
on the PP.

Q: How many vanishing points are there?

'

'

'
1

x x

z z

y y

z z

p tv
d

p tv
x

p tv
y d

p tv
w

  
  

            
 
  

20

Clipping and the viewing frustum

The center of projection and the portion of the
projection plane that map to the final image form an
infinite pyramid. The sides of the pyramid are clipping
planes.

Frequently, additional clipping planes are inserted to
restrict the range of depths. These clipping planes are
called the near and far or the hither and yon clipping
planes.

All of the clipping planes bound the the viewing
frustum.

21

Properties of perspective projections

The perspective projection is an example of a
projective transformation.

Here are some properties of projective
transformations:

 Lines map to lines
 Parallel lines do not necessarily remain parallel
 Ratios are not preserved

One of the advantages of perspective projection is
that size varies inversely with distance – looks
realistic.

A disadvantage is that we can't judge distances as
exactly as we can with parallel projections.

22

Rasterization with color

Recall that the z-buffer works by interpolating z-values
across a triangle that has been projected into image
space, a process called rasterization.

During rasterization, colors can be smeared across a
triangle as well:

23

Gouraud interpolation

Recall from the shading lecture, rendering with per
triangle normals leads to faceted appearance. An
improvement is to compute per-vertex normals and
use graphics hardware to do Gouraud interpolation:

1. Compute normals at the vertices.
2. Shade only the vertices.
3. Interpolate the resulting vertex colors.

24

Gouraud interpolation artifacts

Gouraud interpolation has significant limitations.

1. If the polygonal approximation is too coarse, we
can miss specular highlights.

2. We will encounter Mach banding (derivative
discontinuity enhanced by human eye).

This is what graphics hardware does by default.

A substantial improvement is to do…

25

Phong interpolation

To get an even smoother result with fewer artifacts,
we can perform Phong interpolation.

Here’s how it works:

1. Compute normals at the vertices.
2. Interpolate normals and normalize.
3. Shade using the interpolated normals.

26

Default pipeline: Gouraud interpolation

→ triangle1 2 3, ,i i iv v v

Default fragment processing:

Vertex
processor

Rasterizer

Fragment
processor

Primitive
assembler

attach cblinn-phong to vertex as “varying”
vi ← project v to image

blinn-phong shade with , , , , ,s sdc L V N k k n

 determine lighting directionL
determine viewing directionV 

normalize()eN n

Default vertex processing:

 blinn-phongcolor pc

27

Vertex shader:
attach ne to vertex as “varying”
attach ve to vertex as “varying”
vi ← project v to image

Programmable pipeline:
Phong-interpolated normals!

Vertex
processor

Rasterizer

Fragment
processor

Primitive
assembler

→ triangle1 2 3, ,i i iv v v

Fragment shader:

color shade with , , , , ,p p p
s sdL V N k k n

 normalize()p
eN n

 determine lighting directionL 
determine viewing directionV 

28

Texture mapping and the z-buffer

Texture-mapping can also be handled in z-buffer
algorithms.

Method:

 Scan conversion is done in screen space, as usual
 Each pixel is colored according to the texture
 Texture coordinates are found by Gouraud-style

interpolation

Note: Mapping is more complicated to handle
perspective correctly!

29

Shading in OpenGL

The OpenGL lighting model allows you to associate
different lighting colors according to material
properties they will influence.

Thus, our original shading equation:

becomes:

where you can have a global ambient light with
intensity ILa in addition to having an ambient light
intensity ILa,j associated with each individual light,
as well as separate diffuse and specular intensities,
ILd,j and ILs,j, repectively.

     1
B

r r
s

e a La

n
a La, j j d Ld, j j s Ls, j j +2

j j j j j j

I = k + k I +

k I + k I + k I
a + b + c

() ()N L N H

     
  1

B
r r

N H s

e a La

n
L, j j d j s j2 +

j j j j j j

I = k + k I +

I k + k
a + b + c

N L

30

Materials in OpenGL

The OpenGL code to specify the surface shading
properties is fairly straightforward. For example:

GLfloat ke[] = { 0.1, 0.15, 0.05, 1.0 };
GLfloat ka[] = { 0.1, 0.15, 0.1, 1.0 };
GLfloat kd[] = { 0.3, 0.3, 0.2, 1.0 };
GLfloat ks[] = { 0.2, 0.2, 0.2, 1.0 };
GLfloat ns[] = { 50.0 };
glMaterialfv(GL_FRONT, GL_EMISSION, ke);
glMaterialfv(GL_FRONT, GL_AMBIENT, ka);
glMaterialfv(GL_FRONT, GL_DIFFUSE, kd);
glMaterialfv(GL_FRONT, GL_SPECULAR, ks);
glMaterialfv(GL_FRONT, GL_SHININESS, ns);

Notes:

 The GL_FRONT parameter tells OpenGL that we
are specifiying the materials for the front of the
surface.

 Only the alpha value of the diffuse color is used
for blending. It’s usually set to 1.

31

Shading in OpenGL, cont’d

In OpenGL this equation, for one light source (the 0th) is
specified something like:

GLfloat La[] = { 0.2, 0.2, 0.2, 1.0 };
GLfloat La0[] = { 0.1, 0.1, 0.1, 1.0 };
GLfloat Ld0[] = { 1.0, 1.0, 1.0, 1.0 };
GLfloat Ls0[] = { 1.0, 1.0, 1.0, 1.0 };
GLfloat pos0[] = { 1.0, 1.0, 1.0, 0.0 };
GLfloat a0[] = { 1.0 };
GLfloat b0[] = { 0.5 };
GLfloat c0[] = { 0.25 };
GLfloat S0[] = { -1.0, -1.0, 0.0 };
GLfloat beta0[] = { 45 };
GLfloat e0[] = { 2 };

glLightModelfv(GL_LIGHT_MODEL_AMBIENT, La);
glLightfv(GL_LIGHT0, GL_AMBIENT, La0);
glLightfv(GL_LIGHT0, GL_DIFFUSE, Ld0);
glLightfv(GL_LIGHT0, GL_SPECULAR, Ls0);
glLightfv(GL_LIGHT0, GL_POSITION, pos0);
glLightfv(GL_LIGHT0, GL_CONSTANT_ATTENUATION, a0);
glLightfv(GL_LIGHT0, GL_LINEAR_ATTENUATION, b0);
glLightfv(GL_LIGHT0, GL_QUADRATIC_ATTENUATION, c0);
glLightfv(GL_LIGHT0, GL_SPOT_DIRECTION, S0);
glLightf(GL_LIGHT0, GL_SPOT_CUTOFF, beta0);
glLightf(GL_LIGHT0, GL_SPOT_EXPONENT, e0);

32

Shading in OpenGL, cont’d

Notes:

You can have as many as GL_MAX_LIGHTS lights in a
scene. This number is system-dependent.

For directional lights, you specify a light direction, not
position, and the attenuation and spotlight terms are
ignored.

The directions of directional lights and spotlights are
specified in the coordinate systems of the lights, not
the surface points as we’ve been doing in lecture.

