Parametric surfaces

Brian Curless CSE 557 Fall 2014 Reading

Required:

• Shirley, 2.5

Optional

 Bartels, Beatty, and Barsky. An Introduction to Splines for use in Computer Graphics and Geometric Modeling, 1987.

1

3

2

Mathematical surface representations

- Explicit z=f(x,y) (a.k.a., a "height field")
 - · what if the curve isn't a function, like a sphere?

• Implicit g(x,y,z) = 0

Isocontour from "marching squares"

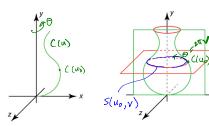
• Parametric S(u,v)=(x(u,v),y(u,v),z(u,v))

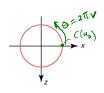
• For the sphere: $x(u,v) = r \cos 2\pi v \sin \pi u$ $y(u,v) = r \sin 2\pi v \sin \pi u$

 $z(u,v) = r \cos \pi u$

As with curves, we'll focus on parametric surfaces.

Constructing surfaces of revolution





Given: A curve C(u) in the xy-plane:

$$C(u) = \begin{bmatrix} c_x(u) \\ c_y(u) \\ 0 \\ 1 \end{bmatrix}$$

Let $R_{\nu}(\theta)$ be a rotation about the *y*-axis.

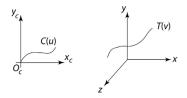
Find: A surface S(u,v) which is C(u) rotated about the *y*-axis, where $u, v \in [0, 1]$.

Solution:
$$S(u,v) = R(2\pi v)C(u)$$

General sweep surfaces

The **surface of revolution** is a special case of a **swept surface**.

Idea: Trace out surface S(u,v) by moving a **profile curve** C(u) along a **trajectory curve** T(v).



More specifically:

- Suppose that C(u) lies in an (x_ey_e) coordinate system with origin O_C
- For every point along T(ν), lay C(u) so that O_c coincides with T(ν).

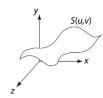
Orientation

The big issue:

• How to orient C(u) as it moves along T(v)?

Here are two options:

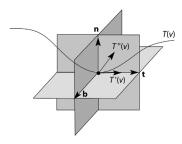
1. **Fixed** (or **static**): Just translate O_c along T(v).



- 2. Moving. Use the **Frenet frame** of $\mathcal{T}(\nu)$.
 - Allows smoothly varying orientation.
 - Permits surfaces of revolution, for example.

Frenet frames

Motivation: Given a curve $\mathcal{T}(v)$, we want to attach a smoothly varying coordinate system.



To get a 3D coordinate system, we need 3 independent direction vectors.

Tangent: $\mathbf{t}(v) = \text{normalize}[T'(v)]$

Binormal: $\mathbf{b}(v) = \text{normalize}[T'(v) \times T''(v)]$

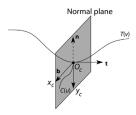
Normal: $\mathbf{n}(v) = \mathbf{b}(v) \times \mathbf{t}(v)$

As we move along $\mathcal{T}(\nu)$, the Frenet frame (t,b,n) varies smoothly.

Frenet swept surfaces

Orient the profile curve C(u) using the Frenet frame of the trajectory T(v):

- Put C(u) in the **normal plane** .
- Place O_c on $T(\nu)$.
- Align x_c for C(u) with **b**.
- Align y_c for C(u) with -**n**.

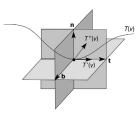


If $\mathcal{T}(v)$ is a circle, you get a surface of revolution exactly!

5

Degenerate frames

Let's look back at where we computed the coordinate frames from curve derivatives:

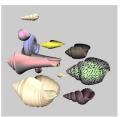


Where might these frames be ambiguous or undetermined?

Variations

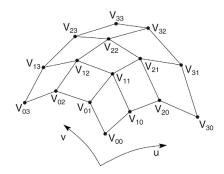
Several variations are possible:

- Scale C(u) as it moves, possibly using length of T(v) as a scale factor.
- Morph C(u) into some other curve $\tilde{C}(u)$ as it moves along T(v).
- ***** ...



9

Tensor product Bézier surfaces



Given a grid of control points V_{ij} forming a **control net**, construct a surface S(u, v) by:

- treating rows of V(the matrix consisting of the V_{ij}) as control points for curves $V_O(u), ..., V_n(u)$.
- treating V₀(u),..., V_n(u) as control points for a curve parameterized by v.

Tensor product Bézier surfaces, cont.

Let's walk through the steps:



Which control points are interpolated by the surface?

Polynomial form of Bézier surfaces

Recall that cubic Bézier *curves* can be written in terms of the Bernstein polynomials:

$$Q(u) = \sum_{i=0}^{n} V_i b_i(u)$$

A tensor product Bézier surface can be written as:

$$S(u,v) = \sum_{i=0}^{n} \sum_{j=0}^{n} V_{ij} b_{i}(u) b_{j}(v)$$

In the previous slide, we constructed curves along u, and then along v. This corresponds to re-grouping the terms like so:

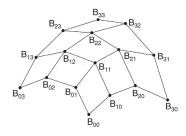
$$S(u,v) = \sum_{j=0}^{n} \left(\sum_{i=0}^{n} V_{ij} b_{i}(u) \right) b_{j}(v)$$

But, we could have constructed them along v, then u:

$$S(u,v) = \sum_{i=0}^{n} \left(\sum_{j=0}^{n} V_{ij} b_{j}(v) \right) b_{i}(u)$$

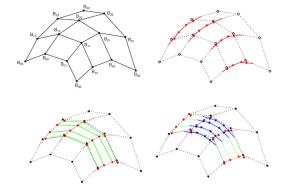
Tensor product B-spline surfaces

As with spline curves, we can piece together a sequence of Bézier surfaces to make a spline surface. If we enforce \mathcal{C}^2 continuity and local control, we get B-spline curves:



- treat rows of *B* as control points to generate Bézier control points in *u*.
- treat Bézier control points in *u* as B-spline control points in *v*.
- ◆ treat B-spline control points in vto generate Bézier control points in u.

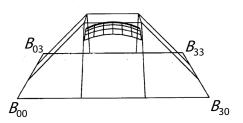
Tensor product B-spline surfaces, cont.



Which B-spline control points are interpolated by the surface?

Tensor product B-splines, cont.

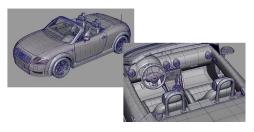
Another example:



13

NURBS surfaces

Uniform B-spline surfaces are a special case of NURBS surfaces.





Trimmed NURBS surfaces

Sometimes, we want to have control over which parts of a NURBS surface get drawn.

For example:

We can do this by **trimming** the u-vdomain.

- ◆ Define a closed curve in the *u-v* domain (a **trim** curve)
- Do not draw the surface points inside of this curve.

It's really hard to maintain continuity in these regions, especially while animating.