Reading

Good resources:

Glassner, Principles of Digital Image Synthesis, pp. 5-32.

Vision and Color

Brian Curless
 CSE 557

Autumn 2014
Palmer, Vision Science: Photons to Phenomenology.

Wandell. Foundations of Vision

Lenses

The human eye employs a lens to focus light.
To quantify lens properties, we'll need some terms from optics (the study of sight and the behavior of light):

- Focal point - the point where parallel rays converge when passing through a lens.
- Focal length - the distance from the lens to the focal point.

focal point

Optics, cont'd

By tracing rays through a lens, we can generally tell where an object point will be focused to an image point:

This construction leads to the Gaussian lens formula:

$$
\frac{1}{d_{o}}+\frac{1}{d_{i}}=\frac{1}{f}
$$

Compound lenses

A compound lens is a sequence of simple lenses.
When simple, thin lenses are stacked right next to each other, they focus much like single lens. We can compute the focal length of the resulting compound lens as follows:

$$
\frac{1}{f_{1}}+\frac{1}{f_{2}}=\frac{1}{f} \quad f=\frac{f_{1} f_{2}}{f_{1}+f_{2}}
$$

It is convenient to define the diopter of a simple lens as the reciprocal of the focal length (in meters), $1 / f$.

Example: A lens with a "power" of 10D has a focal length of 0.1 m .
Why is this convenient? Add diaptes tor compound
leases in inc.ntact)

Structure of the eye

We can treat the cornea + crystalline lens as a compound lens, which roughly follows the
Gaussian lens formula. Again, this is:

$$
\frac{1}{d_{o}}+\frac{1}{d_{i}}=\frac{1}{f}
$$

Q: Given these three parameters, how does the human eye keep the world in focus?

$$
\text { Change } f
$$

Structure of the eye

The most important structural elements of the eye include:

- Cornea - a clear coating over the front of the eye:
- Protects eye against physical damage.
- Provides initial focusing (40D).
- Crystalline lens - provides additional focusing
- Retina - layer of photosensitive cells lining the back of the eye.

Structure of the eye, cont.

- Crystalline lens - controls the focal distance:
- Power ranges from 10 to 30D in a child.
- Power and range reduces with age.
- Ciliary body - The muscles that compress the sides of the lens, controlling its power.

Q: As an object moves closer, do the ciliary muscles contract or relax to keep the object infocus? Contruct

Structure of the eye

The remaining important elements are:

- Iris - Colored annulus with radial muscles.
- Pupil - The hole whose size is controlled by the iris.

The iris adjusts the size of the pupil according to the light levels in front of the subject.

Eye geometry

Eye geometry can account for near- and far- sightedness.

- Emmetropic eye - resting eye has focal point on retina.
- Myopic eye - eye too long (near-sighted).
- Hyperopic eye - eye too short (far-sighted).

Near- and far-sightedness can also result from deficiencies in focusing at the cornea or through the lens.

Presbyopia is loss of flexibility in the lens, reducing up-close focusing power. This happens naturally with age.
Q: Myopia and hyperopia are worse under low light. Why?

Retina

Retina - a layer of photosensitive cells covering 200° on the back of the eye.

- Cones - responsible for color perception
- Rods - Limited to intensity (but 10x more sensitive).
- Fovea - Small region (1 or 2°) at the center of the visual axis containing the highest density of cones (and no rods).

The human retina

Farther
Farther still

Photomicrographs at incresasing distances from the fovea. The large cells are cones; the small ones are rods. (Glassner, 1.5 and Wandell, 3.4).

Photomicrographs at increasing distances from the fovea. In the fovea, all the cells are cones and are small and tightly packed.

Toward the periphery, there are fewer and fewer cones. The large cells are cones, and the small ones are rods, in the non-fovea figures above.

The human retina, cont'd

Photomicrograph of cross-section of the retina near the fovea (Wandell, 5.1).

Accuity across visual field

With one eye shut, look at the center dot with the other eye. At the right distance, all of these letters should appear equally legible (Glassner, 1.7).

Ho ${ }^{\circ} \mathrm{J}$ T

Blind spot
Close your left eye and focus on he " + " with your right eye. At the right distance with the right head rotation, the black dot disappears

Neuronal connections

Even though the retina is very densely covered with photoreceptors, we have much more acuity in the fovea than in the periphery.
Light
Light

To brain

Cones

In the periphery, the outputs of the
photoreceptors are averaged together before being sent to the brain, decreasing the spatial resolution. As many as 1000 rods may converge to a single neuron.

High resolution imaging?

Given that our vision is only high resolution over a very small range of our visual field..
...how do we manage to see "everything" at high resolution?

Fixations and saccades

By scanning your eyes over a scene, you build a composite, high resolution image in our brain.

Fixations: our eyes pause at certain location to see the detail; these pauses are called fixations Saccades: between fixations, we scan rapidly with very jittery motion.

Through gaze tracking, scientists can study how we look at the world.

Yarbus, 1965

Perceptual light intensity

The human eye is highly adaptive to allow us a wide range of flexibility.

One consequence is that we perceive light intensity as we do sound, l.e., on a relative or logarithmicscale

Example: The perceived difference between 0.20 and 0.22 is the same as between 0.80 and 0.88

A related phenomenon is lightness constancy which makes a surface look the same under widely varying lighting conditions.

$$
\begin{aligned}
& \frac{I_{2}}{I_{1}} \frac{10 I_{2}}{10 I_{1}} \\
& \log I_{2}-\log I_{1} \\
& \log \left(10 I_{2}\right)-\log \left(10 I_{1}\right) \\
& \log I_{2}+\log 10-\log I_{1} \\
& -\log 10 \\
& \log I_{2}-\log I_{1}
\end{aligned}
$$

Saccades, cont'd

The saccadic behavior is task-specific:

Yarbus, 1965

1. Free examination.
2. Remember the clothes worn by the people
3. Estimate how long the "unexpected visitor" had been away from the family

Lightness contrast

The apparent brightness of a region depends largely on the surrounding region

The lightness contrast phenomenon makes a constant luminance region seem lighter or darker depending on the surround:

Lightness contrast and constancy

Checker Shadow Effect (Edward Adelson, 1995)

Adaptation

Adaptive processes can adjust the base activity ("bias") and scale the response ("gain").

Through adaptation, the eye can handle a large range of illumination:

Background

Luminance (cd/m²)
0.00003

Moonless overcast nigh
0.003

Moonlit covercast night
0.00

Twilight 300

Day with sunlit clouds 30,000

Some of our ability to handle this range comes from our ability to control the iris (aperture) of our eyes, and the fact that we have different types of photoreceptors

However, much of the range comes from the adaptability of the photoreceptors themselves. This photoreceptor adaptation takes time, as you notice when going between very bright and very dark environments

Mach bands

Mach bands were first dicussed by Ernst Mach, an Austrian physicist

Appear when there are rapid variations in intensity, especially at C^{0} intensity discontinuities:

And at C^{1} intensity discontinuities:

Mach bands, cont.

Possible cause: lateral inhibition of nearby cells.

Lateral inhibition effect (Glassner, 1.25)

Q: What image processing filter does this remind you of?

The radiant energy spectrum

We can think of light as waves, instead of rays.
Wave theory allows a nice arrangement of electromagnetic radiation (EMR) according to wavelength:

Wavelength (meters)

Emission spectra

A light source can be characterized by an emission spectrum

The spectrum describes the energy at each wavelength.

What is color?

The eyes and brain turn an incoming emission spectrum into a discrete set of values.

The signal sent to our brain is somehow interpreted as color.

Color science asks some basic questions

- When are two colors alike?
- How many pigments or primaries does it take to match another color?

One more question: why should we care?

Photopigments

Photopigments are the chemicals in the rods and cones that react to light. Can respond to a single photon!

Rods contain rhodopsin, which has peak sensitivity at about 500nm

Rod sensitivity (Wandell, 4.6)
Rods are active under low light levels, i.e., they are responsible for scotopic vision.

Univariance

Principle of univariance: For any single photoreceptor, no information is transmitted describing the wavelength of the photon.

Measuring photoreceptor photocurrent (Wandell, 4.15)

Photocurrents measured for two light stimuli: 550 nm (solid) and 650 nm (gray). The brightnesses of the stimuli are different, but the shape of the response is the same. (Wandel/ 4.17)

What rods measure

A rod responds to a spectrum through its spectral sensitivity function, $p(\lambda)$.

The response to a test light, $t(\lambda)$, is simply:

$$
P_{t}=\int t(\lambda) p(\lambda) d \lambda
$$

Suppose a rod sees three light spots:
455 nm blue laser of amplitude $1.0 \rightarrow 0.5$
505 nm green laser of amplitude $0.5 \rightarrow 0.5$
550 nm yellow laser of amplitude $1.0 \rightarrow 0.5$
Will these spots look different?

Cone photopigments

Cones come in three varieties: L, M, and S .

Cone photopigment absorption (Glassner, 1.1)

What cones measure

Consider the sensitivity spectra again:

Suppose we show three light spots with unit
intensity lasers at 460nm, 540nm, and 620nm. What will the cones measure?
$\left[\begin{array}{c}L \\ M \\ S\end{array}\right]=$

$460 \mathrm{~nm} \quad 540 \mathrm{~nm}$
620 nm

Can I turn up the intensity of one of the lights to mimic another?

Matching the test light

With the knob settings, we can produce spectra of the form:

$$
A a(\lambda)+B b(\lambda)+C c(\lambda)
$$

Can we match the L, M, Sresponses of the test light?
First some notation:

$$
\begin{aligned}
& \langle f, v\rangle \equiv \int f(\lambda) v(\lambda) d \lambda \\
& \begin{aligned}
&\langle\alpha f, v\rangle=\int(\alpha f(\lambda)) v(\lambda) d \lambda \\
&=\alpha \int f(\lambda) v(\lambda) d \lambda \\
&=\alpha\langle f, v\rangle \\
& \begin{aligned}
\langle f+g, v\rangle & =\int(f(\lambda)+g(\lambda)) v(\lambda) d \lambda \\
& =\int f(\lambda) v(\lambda) d \lambda+\int g(\lambda) v(\lambda) d \lambda \\
& =\langle f, v\rangle+\langle g, v\rangle
\end{aligned} \\
&\langle\alpha f+\beta g, v\rangle=\langle\alpha f, v\rangle+\langle\beta g, v\rangle=\alpha\langle f, v\rangle+\beta\langle g, v\rangle
\end{aligned} \\
& \langle\alpha f+\beta g+\gamma h, v\rangle=\alpha\langle f, v\rangle+\beta\langle g, v\rangle+\gamma\langle h, v\rangle
\end{aligned}
$$

The color matching experiment

We can actually distinguish all of the individual wavelengths as different colors. Does this mean our eyes are full spectral sensors?
Unfortunately, no. To show this, we can perform a color matching experiment.

The idea is to see if we can match a given test light using a finite number of lights called primaries with power control knobs.

The color matching experiment (Wandell, 4.10)
The primary spectra are $a(\lambda), b(\lambda), c(\lambda)$
The power knob settings are A, B, C

Matching the test light

Now I can write the cone responses to the test stimulus as:

$$
\left[\begin{array}{c}
L_{t} \\
M_{t} \\
S_{t}
\end{array}\right]=\left[\begin{array}{l}
\int t(\lambda) l(\lambda) d \lambda \\
\int t(\lambda) m(\lambda) d \lambda \\
\int t(\lambda) s(\lambda) d \lambda
\end{array}\right]=\left[\begin{array}{c}
\langle t, l\rangle \\
\langle t, m\rangle \\
\langle t, s\rangle
\end{array}\right]
$$

The response to the combination of primaries $A a(\lambda)+B b(\lambda)+C c(\lambda)$ is then
$\left[\begin{array}{c}L_{A B C} \\ M_{A B C} \\ S_{A B C}\end{array}\right]=\left[\begin{array}{c}\langle A a+B b+C c, l\rangle \\ \langle A a+B b+C c, m\rangle \\ \langle A a+B b+C c, s\rangle\end{array}\right]=\left[\begin{array}{l}A\langle a, l\rangle+B\langle b, l\rangle+(\langle c, l\rangle \\ A\langle a, m\rangle+b\langle b, m\rangle+C\langle c, m\rangle \\ A\langle a, s\rangle+B\langle b, s\rangle+C\langle c, s\rangle\end{array}\right]$

$$
=\left[\begin{array}{ccc}
\langle a, l\rangle & \langle b j l\rangle & \cdots \\
\langle a, m\rangle & \ddots & \\
\langle a, s\rangle & & \langle c, s\rangle
\end{array}\right]\left[\begin{array}{l}
A \\
B \\
C
\end{array}\right]
$$

Thus, choosing the primary knobs to match a test light amounts to multiplying a matrix!

Choosing Primaries

The primaries could be three color (monochromatic) lasers.

But, they can also be non-monochromatic, e.g. monitor phosphors from an old CRT:

Emission spectra for RGB monitor phosphors (Wandell B.3)

Emission Spectrum is not color

Clearly, information is lost in this projection step...

Different light sources can evoke exactly the same colors. Such lights are called metamers.

Colored Surfaces

So far, we've discussed the colors of lights. How do surfaces acquire color?

Subtractive colour mixing (Wasserman 2.2)
A surface's reflectance, $\rho(\lambda)$, is its tendency to reflect incoming light across the spectrum.

Reflectance is combined "subtractively" with incoming light. Actually, the process is multiplicative.

$$
I(\lambda)=\rho(\lambda) t(\lambda)
$$

Subtractive Metamers

Reflectance adds a whole new dimension of complexity to color perception

The solid curve appears green indoors and out. The dashed curve looks green outdoors, but brown under incandescent light

Illustration of Color Appearance

How light and reflectance become cone responses (Wandell, 9.2)

Human vision, perspective, and 3D

The human visual system uses a lens to collect ligh more efficiently, but records perspectively projected images much like a pinhole camera

Q: Why did nature give us eyes that perform perspective projections?

Q: Do our eyes "see in 3D"?

3D Displays

So-called 3D displays are all the rage now for movie and soon for televisions.

Much of our perception of 3D comes from stereo vision: each eye sees a different view of the world

So, to create the illusion of 3D, we only need to show each eye an image of a scene created from that eye's point of view!

3D Displays, cont'd

