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Reading

Required:

 Stollnitz, DeRose, and Salesin.  Wavelets for 
Computer Graphics:  Theory and Applications,
1996, section 6.1-6.3, 10.2, A.5.

Note: there is an error in Stollnitz, et al., section A.5.  
Equation A.3 should read:

MV = V

This is already fixed in the handout.
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Subdivision curves

Idea:

 repeatedly refine the control polygon

 curve is the limit of an infinite process
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Chaikin’s algorithm

Chakin introduced the following “corner-cutting” 
scheme in 1974:

 Start with a piecewise linear curve
 Insert new vertices at the midpoints (the 

splitting step)
 Average each vertex with the “next” (clockwise) 

neighbor (the averaging step)
 Go to the splitting step
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Averaging masks

The limit curve is a quadratic B-spline!

Instead of averaging with the nearest neighbor, we 
can generalize by applying an averaging mask during 
the averaging step:

In the case of Chaikin’s algorithm:

r =

   1 0 1r r r r
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Lane-Riesenfeld algorithm (1980)

Use averaging masks from Pascal’s triangle:

Gives B-splines of degree n+1.

n=0:

n=1:

n=2:
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Subdivide ad nauseum?

After each split-average step, we are closer to the 
limit curve.  

How many steps until we reach the final (limit) 
position?

Can we push a vertex to its limit position in one step?
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Local subdivision matrix

Consider the cubic B-spline subdivision mask:

Now consider what happens during splitting and averaging in 
a small neighborhood:

We can write equations that relate points at one subdivision 
level to points at the previous:

 
  

1 1 1

4 2 4
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Local subdivision matrix

We can write this as a recurrence relation in matrix 
form:

where the L, R, C’s are (for convenience) row vectors.

In 2D, we can write out all the elements as follows:

We can re-write this as:

and M is the local subdivision matrix.
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Local subdivision matrix, cont’d

Starting from the initial control polygon, we can track 
the original vertex and its original neighborhood 
through subdivision:

The limit position of the neighborhood is then:

OK, so how do we apply a matrix an infinite number of 
times??

 1j jA MA

 
 0lim j

j
A M A
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Eigenvectors and eigenvalues

We now need to look at the eigenvectors and 
eigenvalues of M.  Let v be a vector such that:

Mv = v

We say that v is an eigenvector of M with eigenvalue .

A 3x3 matrix can have 3 eigenvalues and eigenvectors:

In matrix form:
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
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To infinity, but not beyond…

Now let’s apply M to original neigborhood A0:

Now let’s advance another subdivision:

Do it j times:

What if we do this an infinite number of times?

Let’s assume the eigenvalues are non-negative and sorted so 
that:

If 1 > 1, then:

If 1 < 1, then:

If 1 = 1, then:

1 2 3 0n       

 1 0A MA

  2
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j
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Evaluation masks

For cubic B-splines, the local subdivision matrix M is:

It’s eigenvalues and eigenvectors are:

1 = 1 > 2 > 3, so we’re OK!    

We can write out  and V:

We will also need V-1, which turns out to be:
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Evaluation masks (cont’d)

So, we have:

We can now compute the limit position of the 
neighborhood A0 :
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The row vector that pushes the original vertex to 
the limit position is called the evaluation mask:

Note that we do not need start with the 0th level 
control points and push them to the limit.  

If we subdivide and average the control polygon j
times, we can push the vertices of the refined polygon 
to the limit as well:

Now we can cook up a simple procedure for creating 
subdivision curves:

 Subdivide (split+average) the control polygon a 
few times.  Use the averaging mask.

 Push the resulting points to the limit positions.  
Use the evaluation mask.

Recipe for subdivision curves


   1

T
j jA M A u A

    
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6 3 6
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Tangent analysis

 
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Tangent analysis (cont’d)

     1 1 1 2 2 2 3 3 3 0
j T j T j T

j w w w At u u u 1 2 3 0n       
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DLG interpolating scheme (1987)

Slight modification to subdivision algorithm:

 splitting step introduces midpoints
 averaging step only changes midpoints

For DLG (Dyn-Levin-Gregory), use:

Since we are only changing the midpoints, the points 
after the averaging step do not move.  

newold
1

(1)      ( 2,5,10,5, 2)
16

r r   
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Building complex models

We can extend the idea of subdivision from curves to 
surfaces…
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Subdivision surfaces

Chaikin’s use of subdivision for curves inspired similar 
techniques for subdivision surfaces.

Iteratively refine a control polyhedron (or control 
mesh) to produce the limit surface

using splitting and averaging steps.


 lim j

j
S P

0P 1P 2P P


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Triangular subdivision

There are a variety of ways to subdivide a poylgon
mesh.

A common choice for triangle meshes is 4:1 
subdivision – each triangular face is split into four 
smaller triangles:
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Loop averaging step

Once again we can use masks for the averaging step:

where

These values, due to Charles Loop, are carefully chosen 
to ensure smoothness – namely, tangent plane or 
normal continuity.

Note: tangent plane continuity is also know as G1

continuity for surfaces.
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Loop evaluation and tangent masks

As with subdivision curves, we can split and average a 
number of times and then push the points to their 
limit positions.

where

How do we compute the normal?
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Recipe for subdivision surfaces

As with subdivision curves, we can now describe a 
recipe for creating and rendering subdivision surfaces:

 Subdivide (split+average) the control 
polyhedron a few times.  Use the averaging 
mask.

 Compute two tangent vectors using the tangent 
masks.

 Compute the normal from the tangent vectors.
 Push the resulting points to the limit positions.  

Use the evaluation mask.
 Render!
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Adding creases without trim curves

For NURBS surfaces, adding sharp features like creases 
required the use of trim curves.

For subdivision surfaces, we can just modify the 
subdivision masks.  E.g., we can mark some edges and 
vertices as “creases” and modify the subdivision mask 
for them (and their children):

This gives rise to G0 continuous surfaces (i.e., having 
positional but not tangent plane continuity).
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Catmull-Clark subdivision
4:1 subdivision of triangles is sometimes called a 
face scheme for subdivision, as each face begets 
more faces.  

An alternative face scheme starts with arbitrary 
polygon meshes and inserts vertices along edges 
and at face centroids:

Catmull-Clark subdivision:

Note: after the first subdivision, all polygons are 
quadilaterals in this scheme.
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Creases without trim curves, cont.

Here’s an example using Catmull-Clark surfaces (based 
on subdividing quadrilateral meshes):

This particular example uses the hybrid technique of 
DeRose, et al., which applies sharp subdivision rules at 
some creases for a finite number of steps, and then 
switches to smooth subdivision, giving more gentle 
creases.  This technique was used in Geri’s Game.
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Interpolating subdivision surfaces

Interpolating schemes are defined by

 splitting
 averaging only new vertices

The following averaging mask is used in butterfly 
subdivision: 

Setting t=0 gives the original polyhedron, and 
increasing small values of t makes the surface 
smoother, until t=1/8 when the surface is provably G1.


