Shading

Brian Curless CSE 557 Fall 2014

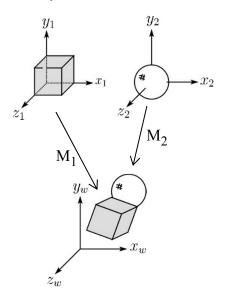
Reading

Required:

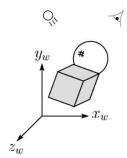
• Shirley, Chapter 10

Basic 3D graphics

With affine matrices, we can now transform virtual 3D objects in their local coordinate systems into a global (world) coordinate system:

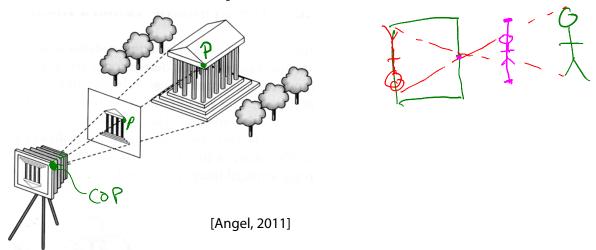


To synthesize an image of the scene, we also need to add light sources and a viewer/camera:



Pinhole camera

To create an image of a virtual scene, we need to define a camera, and we need to model lighting and shading. For the camera, we use a **pinhole camera**.



The image is rendered onto an **image plane** (usually in front of the camera).

Viewing rays emanate from the **center of projection** (COP) at the center of the pinhole.

The image of an object point **P** is at the intersection of the viewing ray through **P** and the image plane.

But is P visible? This the problem of **hidden surface removal** (a.k.a., **visible surface determination**). We'll consider this problem later.

Shading

Next, we'll need a model to describe how light interacts with surfaces.

Such a model is called a **shading model**.

Other names:

- Lighting model
- Light reflection model
- Local illumination model
- Reflectance model
- BRDF

An abundance of photons

Given the camera and shading model, properly determining the right color at each pixel is *extremely hard*.

Look around the room. Each light source has different characteristics. Trillions of photons are pouring out every second.

These photons can:

- interact with molecules and particles in the air ("participating media")
- strike a surface and
 - be absorbed
 - be reflected (scattered)
 - cause fluorescence or phosphorescence.
- interact in a wavelength-dependent manner
- generally bounce around and around

Our problem

We're going to build up to a *approximations* of reality called the **Phong and Blinn-Phong illumination models**.

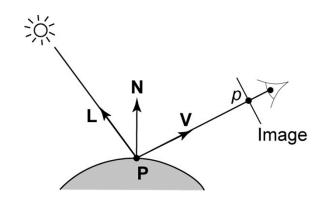
They have the following characteristics:

- not physically correct
- gives a "first-order" approximation to physical light reflection
- very fast
- widely used

In addition, we will assume **local illumination**, i.e., light goes: light source -> surface -> viewer.

No interreflections, no shadows.

Setup...



Given:

- ◆ a point P on a surface visible through pixel p
- The normal N at P
- The lighting direction, L, and (color) intensity, I_L, at P
- ◆ The viewing direction, **V**, at **P**
- ◆ The shading coefficients at **P**

Compute the color, I, of pixel p.

Assume that the direction vectors are normalized:

$$\|\mathbf{N}\| = \|\mathbf{L}\| = \|\mathbf{V}\| = 1$$

"Iteration zero"

The simplest thing you can do is...

Assign each polygon a single color:

$$I = k_e$$

where

- /is the resulting intensity
- k_e is the **emissivity** or intrinsic shade associated with the object

This has some special-purpose uses, but not really good for drawing a scene.

[Note: k_e is omitted in Shirley.]

"Iteration one"

Let's make the color at least dependent on the overall quantity of light available in the scene:

$$I = k_e + k_a I_{La}$$

- k_a is the ambient reflection coefficient.
 - really the reflectance of ambient light
 - "ambient" light is assumed to be equal in all directions
- /_{La} is the **ambient light intensity**.

Physically, what is "ambient" light?

Pour man's interreflection

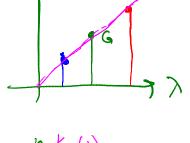
[Note: Shirley uses c_a instead of I_{La} .]

Wavelength dependence

Really, $k_{e'}$, $k_{a'}$ and l_{La} are functions over all wavelengths λ .

Ideally, we would do the calculation on these functions. For the ambient shading equation, we would start with:

$$I(\lambda) = k_a(\lambda)I_{la}(\lambda)$$



/ ka(x)

then we would find good RGB values to represent the spectrum $I(\lambda)$.

Traditionally, though, k_a and I_{La} are represented as RGB triples, and the computation is performed on each color channel separately:

$$I^{R} = k_{a}^{R} I_{La}^{R}$$
$$I^{G} = k_{a}^{G} I_{La}^{G}$$
$$I^{B} = k_{a}^{B} I_{La}^{B}$$

Diffuse reflection

Let's examine the ambient shading model:

- objects have different colors
- we can control the overall light intensity
 - what happens when we turn off the lights?
 - what happens as the light intensity increases?
 - what happens if we change the color of the lights?

So far, objects are uniformly lit.

- not the way things really appear
- in reality, light sources are localized in position or direction

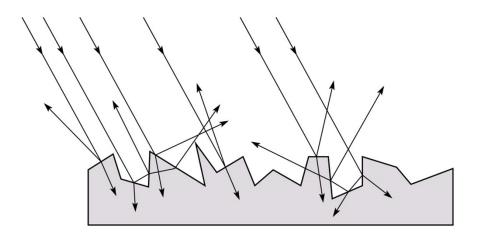
Diffuse, or **Lambertian** reflection will allow reflected intensity to vary with the direction of the light.

Diffuse reflectors

Diffuse reflection occurs from dull, matte surfaces, like latex paint, or chalk.

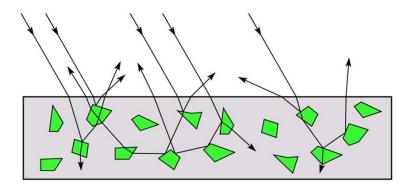
These **diffuse** or **Lambertian** reflectors reradiate light equally in all directions.

Picture a rough surface with lots of tiny **microfacets**.



Diffuse reflectors

...or picture a surface with little pigment particles embedded beneath the surface (neglect reflection at the surface for the moment):



The microfacets and pigments distribute light rays in all directions.

Embedded pigments are responsible for the coloration of diffusely reflected light in plastics and paints.

Note: the figures above are intuitive, but not strictly (physically) correct.

Diffuse reflectors, cont.

The reflected intensity from a diffuse surface does not depend on the direction of the viewer. The incoming light, though, does depend on the direction of the light source:

$$(oS\theta = N \cdot L) \left(||M|| = ||L|| = 1 \right)$$

$$dA = dA \cdot cos\theta$$

$$I \sim \begin{cases} cos\theta & cos\theta > 0 \\ 0 & else \end{cases}$$

$$I \sim \begin{cases} cos\theta & cos\theta > 0 \\ 0 & else \end{cases}$$

$$I \sim \begin{cases} cos\theta & cos\theta > 0 \\ 0 & else \end{cases}$$

$$I \sim \begin{cases} cos\theta > 0 \\ 0 & else \end{cases}$$

$$I \sim \begin{cases} cos\theta > 0 \\ 0 & else \end{cases}$$

$$I \sim \begin{cases} cos\theta > 0 \\ 0 & else \end{cases}$$

"Iteration two"

The incoming energy is proportional to $\frac{\ell \circ SO}{}$, giving the diffuse reflection equations:

$$I = K_e + K_a I_{La} + K_d I_L B \underline{\text{Cosb}}$$

$$= k_e + k_a I_{La} + k_d I_L B(\mathcal{N} \cdot L)$$

where:

- *k_d* is the diffuse reflection coefficient
- ◆ // is the (color) intensity of the light source
- **N** is the normal to the surface (unit vector)
- L is the direction to the light source (unit vector)
- *B* prevents contribution of light from below the surface:

$$B = \begin{cases} 1 & \text{if } \mathbf{N} \cdot \mathbf{L} > \mathbf{0} \\ 0 & \text{if } \mathbf{N} \cdot \mathbf{L} \le \mathbf{0} \end{cases}$$

[Note: Shirley uses c_r and c_l instead of k_d and L.]

Specular reflection

Specular reflection accounts for the highlight that you see on some objects.

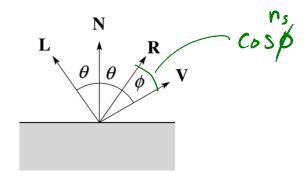
It is particularly important for *smooth, shiny* surfaces, such as:

- metal
- polished stone
- plastics
- apples
- skin

Properties:

- ◆ Specular reflection depends on the viewing direction **V**.
- For non-metals, the color is determined solely by the color of the light.
- For metals, the color may be altered (e.g., brass)

Specular reflection "derivation"



For a perfect mirror reflector, light is reflected about **N**, so

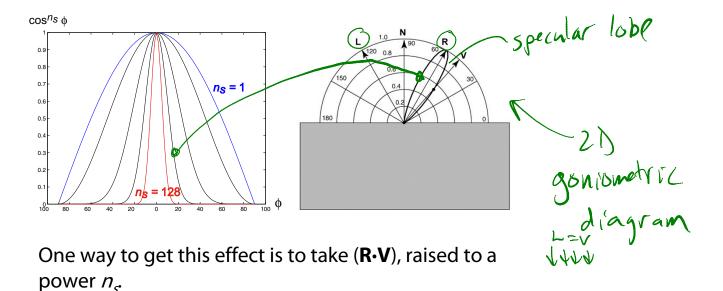
$$I = \begin{cases} I_L & \text{if } \mathbf{V} = \mathbf{R} \\ 0 & \text{otherwise} \end{cases}$$

For a near-perfect reflector, you might expect the highlight to fall off quickly with increasing angle ϕ .

Also known as:

- "rough specular" reflection
- "directional diffuse" reflection
- "glossy" reflection

Phong specular reflection



As n_s gets larger,

- the dropoff becomes {more,less} gradual
- gives a {larger, smaller} highlight
- simulates a (more, less) mirror-like surface

Phong specular reflection is proportional to:

$$I_{\text{specular}} \sim B(\mathbf{R} \cdot \mathbf{V})_{+}^{n_s}$$

where $(x)_{+} \equiv \max(0, x)$.

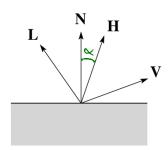
Blinn-Phong specular reflection

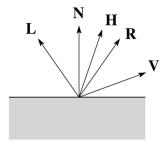
A common alternative for specular reflection is the **Blinn-Phong model** (sometimes called the **modified Phong model**.)

We compute the vector halfway between **L** and **V** as:

$$H = \frac{L+V}{2}$$

$$H = \frac{L+V}{||L+V||}$$





Analogous to Phong specular reflection, we can compute the specular contribution in terms of (**N·H**), raised to a power n_s :

$$I_{\text{specular}} = B(\mathbf{N} \cdot \mathbf{H})_{+}^{n_{s}}$$

where, again, $(x)_{+} \equiv \max(0, x)$.

"Iteration three"

The next update to the Blinn-Phong shading model is then:

$$I = K_e + K_a I_{La} + K_d I_L B(\mathbf{N} \cdot \mathbf{L}) + K_s I_L B(\mathbf{N} \cdot \mathbf{H})_+^{n_s}$$

$$= k_e + k_a I_{La} + I_L B \left[k_d (\mathbf{N} \cdot \mathbf{L}) + k_s (\mathbf{N} \cdot \mathbf{H})_+^{n_s} \right]$$

where:

- k_s is the specular reflection coefficient
- n_s is the specular exponent or shininess
- ◆ H is the unit halfway vector between L and V, where V is the viewing direction, and:

$$(\mathbf{N} \cdot \mathbf{H})_{+}^{n_s} = \begin{cases} (\mathbf{N} \cdot \mathbf{H})^{n_s} & \text{if } \mathbf{N} \cdot \mathbf{H} > \mathbf{0} \\ 0 & \text{if } \mathbf{N} \cdot \mathbf{H} \le \mathbf{0} \end{cases}$$

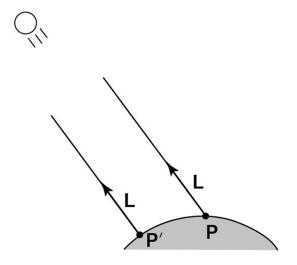
[Note: Shirley uses **e**, **r**, **h**, and p instead of **V**, **R**, **H**, and n_s]

Directional lights

The simplest form of lights supported by renderers are ambient, directional, and point. Spotlights are also supported often as a special form of point light.

We've seen ambient light sources, which are not really geometric.

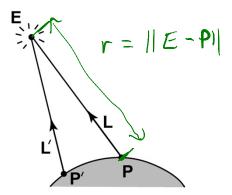
Directional light sources have a single direction and intensity associated with them.



Using affine notation, what is the homogeneous coordinate for a directional light?

Point lights

The direction of a **point light** sources is determined by the vector from the light position to the surface point.



Physics tells us the intensity must drop off inversely with the square of the distance:

$$f_{\text{atten}} = \frac{1}{r^2}$$

Sometimes, this distance-squared dropoff is considered too "harsh." A common alternative is:

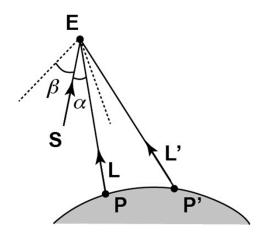
$$f_{\text{atten}} = \frac{1}{a + br + cr^2}$$

with user-supplied constants for a, b, and c.

Using affine notation, what is the homogeneous coordinate for a point light?

Spotlights

We can also apply a *directional attenuation* of a point light source, giving a **spotlight** effect.



A common choice for the spotlight intensity is:

$$f_{\text{spot}} = \begin{cases} \frac{\left(\mathbf{L} \cdot \mathbf{S}\right)^{e}}{a + br + cr^{2}} & \alpha \leq \beta \\ 0 & \text{otherwise} \end{cases}$$

where

- L is the direction to the point light.
- **S** is the center direction of the spotlight.
- α is the angle between **L** and **S**
- β is the cutoff angle for the spotlight
- e is the angular falloff coefficient

Note: $\alpha \leq \beta \iff \cos^{-1}(\mathbf{L} \cdot \mathbf{S}) \leq \beta \iff \mathbf{L} \cdot \mathbf{S} \geq \cos \beta$.

"Iteration four"

Since light is additive, we can handle multiple lights by taking the sum over every light.

Our equation is now:

$$I = k_e + k_a I_{La} + \frac{\left(\mathbf{L}_j \cdot \mathbf{S}_j\right)_{\beta_j}^{e_j}}{a_j + b_j r_j + c_j r_j^2} I_{L,j} B_j \left[k_d \left(\mathbf{N} \cdot \mathbf{L}_j\right) + k_s \left(\mathbf{N} \cdot \mathbf{H}_j\right)_{+}^{n_s} \right]$$

This is the Blinn-Phong illumination model (for spotlights).

Which quantities are spatial vectors?

Which are RGB triples?

Which are scalars?

Choosing the parameters

Experiment with different parameter settings. To get you started, here are a few suggestions:

- Try n_s in the range [0,100]
- Try $k_a + k_d + k_s < 1$
- Use a small k_a (~0.1)

	$n_{\rm s}$	k _d	k _s
Metal	large	Small, color of metal	Large, color of metal
Plastic	medium	Medium, color of plastic	Medium, white
Planet	0	varying	0

BRDF

The diffuse+specular parts of the Blinn-Phong illumination model are a mapping from light to viewing directions:

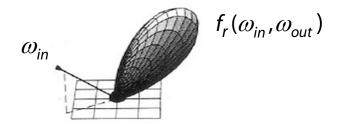
$$I = I_{L}B \left[K_{d}(\mathbf{N} \cdot \mathbf{L}) + K_{s}\mathbf{N} \cdot \left(\frac{\mathbf{L} + \mathbf{V}}{\|\mathbf{L} + \mathbf{V}\|} \right)_{+}^{n_{s}} \right]$$
$$= I_{L} f_{r}(\mathbf{L}, \mathbf{V})$$

The mapping function f_r is often written in terms of incoming (light) directions ω_{in} and outgoing (viewing) directions ω_{out} :

$$f_r(\omega_{in}, \omega_{out})$$
 or $f_r(\omega_{in} \rightarrow \omega_{out})$

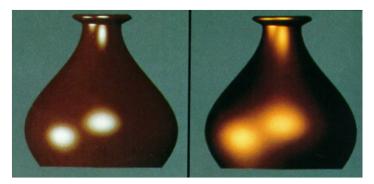
This function is called the **Bi-directional Reflectance Distribution Function** (**BRDF**).

Here's a plot with ω_{in} held constant:



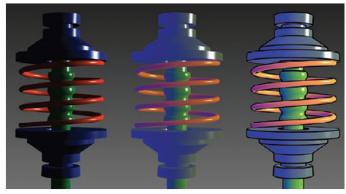
BRDF's can be quite sophisticated...

More sophisticated BRDF's



[Cook and Torrance, 1982]

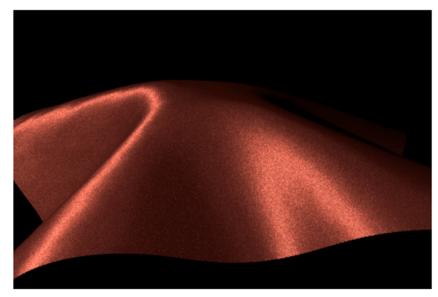
Anisotropic BRDFs [Westin, Arvo, Torrance 1992]



Artistics BRDFs [Gooch]

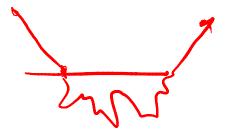
More sophisticated BRDF's (cont'd)

Hair illuminated from different angles [Marschner et al., 2003]



Wool cloth and silk cloth [Irawan and Marschner, 2012]

BSSRDFs for subsurface scattering



[Jensen et al. 2001]