Mathematical surface representations

- Explicit \(z = f(x,y) \) (a.k.a., a “height field”)
 - what if the curve isn’t a function, like a sphere?

- Implicit \(g(x,y,z) = 0 \)

- Parametric \(S(u,v) = (x(u,v), y(u,v), z(u,v)) \)
 - For the sphere:
 \[
 x(u,v) = r \cos 2\pi v \sin \pi u \\
 y(u,v) = r \sin 2\pi v \sin \pi u \\
 z(u,v) = r \cos \pi u
 \]

As with curves, we’ll focus on parametric surfaces.
General sweep surfaces

The **surface of revolution** is a special case of a swept surface.

Idea: Trace out surface $S(u,v)$ by moving a profile curve $C(u)$ along a trajectory curve $T(v)$.

More specifically:
- Suppose that $C(u)$ lies in an (x_c,y_c) coordinate system with origin O_c.
- For every point along $T(v)$, lay $C(u)$ so that O_c coincides with $T(v)$.

Orientation

The big issue:
- How to orient $C(u)$ as it moves along $T(v)$?

Here are two options:
1. **Fixed (or static):** Just translate O_c along $T(v)$.
2. Moving. Use the Frenet frame of $T(v)$.
 - Allows smoothly varying orientation.
 - Permits surfaces of revolution, for example.

Frenet frames

Motivation: Given a curve $T(v)$, we want to attach a smoothly varying coordinate system.

To get a 3D coordinate system, we need 3 independent direction vectors.

- **Tangent:** $t(v) = \text{normalize}(T'(v))$
- **Binormal:** $b(v) = \text{normalize}(T'(v) \times T''(v))$
- **Normal:** $n(v) = b(v) \times t(v)$

As we move along $T(v)$, the Frenet frame (t,b,n) varies smoothly.

Frenet swept surfaces

Orient the profile curve $C(u)$ using the Frenet frame of the trajectory $T(v)$:
- Put $C(u)$ in the **normal plane**.
- Place O_c on $T(v)$.
- Align x_c for $C(u)$ with b.
- Align y_c for $C(u)$ with $-n$.

If $T(v)$ is a circle, you get a surface of revolution exactly!
Degenerate frames

Let’s look back at where we computed the coordinate frames from curve derivatives:

Where might these frames be ambiguous or undetermined?

Variations

Several variations are possible:

- Scale $C(u)$ as it moves, possibly using length of $T(v)$ as a scale factor.
- Morph $C(u)$ into some other curve $\tilde{C}(u)$ as it moves along $T(v)$.
- ...

Tensor product Bézier surfaces

Given a grid of control points V_{ij} forming a control net, construct a surface $S(u,v)$ by:

- treating rows of V (the matrix consisting of the V_{ij}) as control points for curves $V_{i0}(u), \ldots, V_{in}(u)$.
- treating $V_{01}(u), \ldots, V_{in}(u)$ as control points for a curve parameterized by v.

Tensor product Bézier surfaces, cont.

Let’s walk through the steps:

Which control points are interpolated by the surface?
Polynomial form of Bézier surfaces

Recall that cubic Bézier curves can be written in terms of the Bernstein polynomials:

$$Q(u) = \sum_{i=0}^{3} Y_{i} b_{i}(u)$$

A tensor product Bézier surface can be written as:

$$S(u,v) = \sum_{i=0}^{n} \sum_{j=0}^{n} X_{ij} b_{i}(u) b_{j}(v)$$

In the previous slide, we constructed curves along u, and then along v. This corresponds to re-grouping the terms like so:

$$S(u,v) = \sum_{i=0}^{n} \left(\sum_{j=0}^{n} Y_{ij} b_{j}(v) \right) b_{i}(u)$$

But, we could have constructed them along v, then u:

$$S(u,v) = \sum_{j=0}^{n} \left(\sum_{i=0}^{n} X_{ij} b_{i}(u) \right) b_{j}(v)$$

As with spline curves, we can piece together a sequence of Bézier surfaces to make a spline surface. If we enforce C^2 continuity and local control, we get B-spline curves:

1. treat rows of B as control points to generate Bézier control points in u.
2. treat Bézier control points in u as B-spline control points in v.
3. treat B-spline control points in v to generate Bézier control points in u.

Tensor product B-spline surfaces, cont.

Which B-spline control points are interpolated by the surface?

Tensor product B-splines, cont.

Another example:
NURBS surfaces

Uniform B-spline surfaces are a special case of NURBS surfaces.

Trimmed NURBS surfaces

Sometimes, we want to have control over which parts of a NURBS surface get drawn.

For example:

We can do this by trimming the u-v domain.

- Define a closed curve in the u-v domain (a trim curve)
- Do not draw the surface points inside of this curve.

It’s really hard to maintain continuity in these regions, especially while animating.