Reading **Required:** Shirley, 2.5 **Parametric surfaces** Optional • Bartels, Beatty, and Barsky. An Introduction to **Brian Curless** Splines for use in Computer Graphics and CSE 557 Geometric Modeling, 1987. Fall 2014 1 **Constructing surfaces of revolution** Mathematical surface representations

Let $R_{\nu}(\theta)$ be a rotation about the *y*-axis.

Find: A surface S(u, v) which is C(u) rotated about the *y*-axis, where $u, v \in [0, 1]$.

Solution: $\mathfrak{g}(\mathfrak{g},\mathfrak{g}) = \mathcal{R}_{\mathfrak{g}}(\mathfrak{I},\mathfrak{g}) \mathcal{C}(\mathfrak{u})$

General sweep surfaces

The surface of revolution is a special case of a swept surface.

Idea: Trace out surface S(u,v) by moving a **profile curve** C(u) along a **trajectory curve** T(v).

More specifically:

- Suppose that C(u) lies in an (x_oy_c) coordinate system with origin O_c
- For every point along T(v), lay C(u) so that O_c coincides with T(v).

Orientation

The big issue:

• How to orient C(u) as it moves along T(v)?

Here are two options:

1. **Fixed** (or **static**): Just translate O_c along T(v).

2. Moving. Use the **Frenet frame** of T(v).

- Allows smoothly varying orientation.
- · Permits surfaces of revolution, for example.

Frenet frames

Motivation: Given a curve T(v), we want to attach a smoothly varying coordinate system.

To get a 3D coordinate system, we need 3 independent direction vectors.

Tangent:t(v) = normalize[T'(v)]Binormal: $b(v) = normalize[T'(v) \times T''(v)]$ Normal: $n(v) = b(v) \times t(v)$

As we move along T(v), the Frenet frame (t, b, n) varies smoothly.

Frenet swept surfaces

Orient the profile curve C(u) using the Frenet frame of the trajectory T(v):

- Put C(u) in the normal plane .
- Place O_c on T(v).
- Align x_c for C(u) with **b**.
- Align y_c for C(u) with -**n**.

If T(v) is a circle, you get a surface of revolution exactly!

5

8

Degenerate frames

Let's look back at where we computed the coordinate frames from curve derivatives:

Where might these frames be ambiguous or undetermined?

Variations

Several variations are possible:

- Scale C(u) as it moves, possibly using length of T(v) as a scale factor.
- Morph C(u) into some other curve C̃(u) as it moves along T(v).

• ...

Tensor product Bézier surfaces

Given a grid of control points V_{ij} forming a **control net**, construct a surface S(u, v) by:

- treating rows of V(the matrix consisting of the V_j) as control points for curves V₀(u),..., V_n(u).
- treating V₀(u),..., V_n(u) as control points for a curve parameterized by v.

Tensor product Bézier surfaces, cont.

Let's walk through the steps:

Which control points are interpolated by the surface?

Corners

9

Polynomial form of Bézier surfaces

Recall that cubic Bézier *curves* can be written in terms of the Bernstein polynomials:

$$Q(u) = \sum_{i=0}^{n} V_i b_i(u)$$

A tensor product Bézier surface can be written as:

$$S(u, v) = \sum_{i=0}^{n} \sum_{j=0}^{n} V_{ij} b_i(u) b_j(v)$$

In the previous slide, we constructed curves along u, and then along v. This corresponds to re-grouping the terms like so:

$$S(u, v) = \sum_{j=0}^{n} \left(\sum_{i=0}^{n} V_{ij} b_i(u) \right) b_j(v)$$

But, we could have constructed them along v, then u:

$$S(u,v) = \sum_{i=0}^{n} \left(\sum_{j=0}^{n} V_{ij} b_j(v) \right) b_i(u)$$

Tensor product B-spline surfaces, cont.

Which B-spline control points are interpolated by the surface? \mathcal{W}_{BAC}

Tensor product B-spline surfaces

Tensor product B-splines, cont.

Another example:

13

NURBS surfaces

Uniform B-spline surfaces are a special case of NURBS surfaces.

17

Trimmed NURBS surfaces

Sometimes, we want to have control over which parts of a NURBS surface get drawn.

For example:

We can do this by **trimming** the *u*-*v* domain.

- Define a closed curve in the *u-v* domain (a trim curve)
- Do not draw the surface points inside of this curve.

It's really hard to maintain continuity in these regions, especially while animating.