Image processing

Brian Curless
CSE 557
Autumn 2014
Reading

What is an image?

We can think of an image as a function, \(f \), from \(\mathbb{R}^2 \) to \(\mathbb{R} \):

- \(f(x, y) \) gives the intensity of a channel at position \((x, y) \)
- Realistically, we expect the image only to be defined over a rectangle, with a finite range:
 - \(f: [a, b] \times [c, d] \rightarrow [0,1] \)

A color image is just three functions pasted together. We can write this as a “vector-valued” function:

\[
f(x, y) = \begin{bmatrix} r(x, y) \\ g(x, y) \\ b(x, y) \end{bmatrix}
\]
Images as functions
What is a digital image?

In computer graphics, we usually operate on digital (discrete) images:

- **Sample** the space on a regular grid
- **Quantize** each sample (round to nearest integer)

If our samples are Δ apart, we can write this as:

$$f[i,j] = \text{Quantize} \{ f(i\Delta, j\Delta) \}$$
Image processing

An **image processing** operation typically defines a new image \(g \) in terms of an existing image \(f \).

The simplest operations are those that transform each pixel in isolation. These pixel-to-pixel operations can be written:

\[
g(x, y) = t(f(x, y))
\]

Examples: threshold, RGB \(\rightarrow \) grayscale

Note: a typical choice for mapping to grayscale is to apply the YIQ television matrix and keep the Y.

\[
\begin{bmatrix}
Y \\
I \\
Q
\end{bmatrix} = \begin{bmatrix}
0.299 & 0.587 & 0.114 \\
0.596 & -0.275 & -0.321 \\
0.212 & -0.523 & 0.311
\end{bmatrix}
\begin{bmatrix}
R \\
G \\
B
\end{bmatrix}
\]
Noise

Image processing is also useful for noise reduction and edge enhancement. We will focus on these applications for the remainder of the lecture...

Common types of noise:

- **Salt and pepper noise**: contains random occurrences of black and white pixels
- **Impulse noise**: contains random occurrences of white pixels
- **Gaussian noise**: variations in intensity drawn from a Gaussian normal distribution

\[
\begin{align*}
\text{Poisson noise} & \quad \mu = I \\
\sigma^2 & \sim \mu \\
\text{SNR} & = \frac{\mu}{\sigma} = \frac{\mu}{\sqrt{\mu}} = \sqrt{\mu}
\end{align*}
\]

\[
\hat{I}(x,y) = I(x,y) + \eta(\mu, \sigma)
\]
Ideal noise reduction
Ideal noise reduction
Practical noise reduction

How can we “smooth” away noise in a single image?

Is there a more abstract way to represent this sort of operation? Of course there is!
Discrete convolution

One of the most common methods for filtering an image is called \textbf{discrete convolution}. (We will just call this “convolution” from here on.)

In 1D, convolution is defined as:

\[g[n] = f[n] \ast h[n] = \sum_{n'} f[n']h[n-n'] = \sum_{n'} f[n']\tilde{h}[n'-n] \]

where \(\tilde{h}[n] = h[-n] \).
Some properties of discrete convolution

One can show that convolution has some convenient properties. Given functions a, b, c:

$$a * b = b * a$$
$$ (a * b) * c = a * (b * c)$$
$$ a * (b + c) = a * b + a * c$$

We’ll make use of these properties later…
Convolution in 2D

In two dimensions, convolution becomes:

\[g[n,m] = f[n,m] * h[n,m] \]
\[= \sum_{m'} \sum_{n'} f[n',m'] h[n-n',m-m'] \]
\[= \sum_{m'} \sum_{n'} f[n',m'] \tilde{h}[n'-n,m'-m] \]

where \(\tilde{h}[n,m] = h[-n,-m] \).
Convolution representation

Since f and h are defined over finite regions, we can write them out in two-dimensional arrays:

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>128</td>
<td>54</td>
<td>9</td>
<td>78</td>
<td>100</td>
</tr>
<tr>
<td>145</td>
<td>98</td>
<td>240</td>
<td>233</td>
<td>86</td>
</tr>
<tr>
<td>89</td>
<td>177</td>
<td>246</td>
<td>228</td>
<td>127</td>
</tr>
<tr>
<td>67</td>
<td>90</td>
<td>255</td>
<td>237</td>
<td>95</td>
</tr>
<tr>
<td>106</td>
<td>111</td>
<td>128</td>
<td>167</td>
<td>20</td>
</tr>
<tr>
<td>221</td>
<td>154</td>
<td>97</td>
<td>123</td>
<td>0</td>
</tr>
</tbody>
</table>

Note: This is not matrix multiplication!

Q: What happens at the boundary of the image?
Mean filters

How can we represent our noise-reducing averaging as a convolution filter (known as a mean filter)?
Effect of mean filters

<table>
<thead>
<tr>
<th>Gaussian noise</th>
<th>Salt and pepper noise</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Gaussian filters

Gaussian filters weigh pixels based on their distance from the center of the convolution filter. In particular:

\[h[n,m] = \frac{e^{-\frac{(n^2+m^2)}{2\sigma^2}}}{C} \]

This does a decent job of blurring noise while preserving features of the image.

What parameter controls the width of the Gaussian?

What happens to the image as the Gaussian filter kernel gets wider?

What is the constant \(C \)? What should we set it to?

\[C = \sum e^{-\frac{(n^2+m^2)}{2\sigma^2}} \]
Effect of Gaussian filters

- Gaussian noise
- Salt and pepper noise

3x3

5x5

7x7
Median filters

A **median filter** operates over an $m \times m$ region by selecting the median intensity in the region.

What advantage does a median filter have over a mean filter? **Outlier removal, edge-preserving**

Is a median filter a kind of convolution? N_D
Effect of median filters

Gaussian noise

Salt and pepper noise

3x3

5x5

7x7
Comparison: Gaussian noise

<table>
<thead>
<tr>
<th>Mean</th>
<th>Gaussian</th>
<th>Median</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Comparison: salt and pepper noise

<table>
<thead>
<tr>
<th>Size</th>
<th>Mean</th>
<th>Gaussian</th>
<th>Median</th>
</tr>
</thead>
<tbody>
<tr>
<td>3x3</td>
<td>![3x3 Mean]</td>
<td>![3x3 Gaussian]</td>
<td>![3x3 Median]</td>
</tr>
<tr>
<td>5x5</td>
<td>![5x5 Mean]</td>
<td>![5x5 Gaussian]</td>
<td>![5x5 Median]</td>
</tr>
<tr>
<td>7x7</td>
<td>![7x7 Mean]</td>
<td>![7x7 Gaussian]</td>
<td>![7x7 Median]</td>
</tr>
</tbody>
</table>
Bilateral filtering

Bilateral filtering is a method to average together nearby samples only if they are similar in value.
Bilateral filtering

We can also change the filter to something “nicer” like Gaussians:

Recall that convolution looked like this:

\[g[n] = \sum_{n'} f[n'] h[n - n'] \]

Bilateral filter is similar, but includes both range and domain filtering:

\[g[n] = \frac{1}{C} \sum_{n'} f[n'] h_{\sigma_s}[n - n'] h_{\sigma_r}(f[n] - f[n']) \]

and you have to normalize as you go:

\[C = \sum_{n'} h_{\sigma_s}[n - n'] h_{\sigma_r}(f[n] - f[n']) \]
Input

$\sigma_r = 0.1$ $\sigma_r = 0.25$

Paris, et al. SIGGRAPH course notes 2007
Edge detection

One of the most important uses of image processing is **edge detection:**

- Really easy for humans
- Really difficult for computers

- Fundamental in computer vision
- Important in many graphics applications
What is an edge?

Q: How might you detect an edge in 1D?

\[
\left| \frac{df}{dx} \right| > \text{thresh}
\]

\[
h_x = \begin{bmatrix} 1 & -1 & 0 \end{bmatrix}
\]

\[
\frac{df}{dx} \approx f[n+1] - f[n] = f[n] \ast h_x[n]
\]

\[
h_x[n] = [0 \ -1 \ 1]
\]

finite difference derivative.
Gradients

The **gradient** is the 2D equivalent of the derivative:

\[
\nabla f(x, y) = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right)
\]

Properties of the gradient

- It’s a vector
- Points in the direction of maximum increase of \(f \)
- Magnitude is rate of increase

How can we approximate the gradient in a discrete image?

\[
\tilde{h}_x = \begin{bmatrix} 0 & -1 & 1 \end{bmatrix}
\]

\[
\tilde{h}_y = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}
\]

\[
\theta = \tan^{-1} \left(\frac{\partial f / \partial y}{\partial f / \partial x} \right)
\]

\[
\| \nabla f \| = \sqrt{\left(\frac{\partial f}{\partial x} \right)^2 + \left(\frac{\partial f}{\partial y} \right)^2}
\]
Less than ideal edges
Steps in edge detection

Edge detection algorithms typically proceed in three or four steps:

- **Filtering**: cut down on noise
- **Enhancement**: amplify the difference between edges and non-edges
- **Detection**: use a threshold operation
- **Localization** (optional): estimate geometry of edges as 1D contours that can pass between pixels
Edge enhancement

A popular gradient filter is the **Sobel operator**:

\[
\tilde{s}_x = \begin{bmatrix}
-1 & 0 & 1 \\
-2 & 0 & 2 \\
-1 & 0 & 1
\end{bmatrix} \\
\tilde{s}_y = \begin{bmatrix}
1 & 2 & 1 \\
0 & 0 & 0 \\
-1 & -2 & -1
\end{bmatrix}
\]

\[
\tilde{s}_x = \begin{bmatrix}
1 \\
2 \\
1
\end{bmatrix} \ast \begin{bmatrix}
1 & 0 & -1
\end{bmatrix} = \begin{bmatrix}
1 & 0 & -1
\end{bmatrix} \ast \begin{bmatrix}
1 \\
2 \\
1
\end{bmatrix} \ast f
\]

We can then compute the magnitude of the vector \((\tilde{s}_x, \tilde{s}_y)\).

Note that these operators are conveniently "pre-flipped" for convolution, so you can directly slide these across an image without flipping first.

Use these filters for gradients (without flipping) in an Impressionist. Note that brushes should be oriented at 90° to gradient.

central diff. deriv.
Results of Sobel edge detection

Original

Smoothed

Sx + 128

Sy + 128

Magnitude

Threshold = 64

Threshold = 128
Second derivative operators

The Sobel operator can produce thick edges. Ideally, we’re looking for infinitely thin boundaries.

An alternative approach is to look for local extrema in the first derivative: places where the change in the gradient is highest.

Q: A peak in the first derivative corresponds to what in the second derivative?

Q: How might we write this as a convolution filter?
Localization with the Laplacian

An equivalent measure of the second derivative in 2D is the Laplacian:

\[\nabla^2 f(x, y) = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} \]

Using the same arguments we used to compute the gradient filters, we can derive a Laplacian filter to be:

\[\Delta = \begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix} \]

(The symbol \(\Delta \) is often used to refer to the discrete Laplacian filter.)

Zero crossings in a Laplacian filtered image can be used to localize edges.
Localization with the Laplacian

Original

Smoothed

Laplacian (+128)
Sharpening with the Laplacian

\[f = \lambda \Delta f \]

\[
\begin{pmatrix}
0 & -\lambda & 0 \\
-\lambda & 1 + \lambda & -\lambda \\
0 & -\lambda & 0
\end{pmatrix}
\]

\[\lambda = \frac{1}{2} \]

\[
\begin{pmatrix}
-\frac{1}{2} & -\frac{1}{2} & 1 \\
-\frac{1}{2} & 3 & -\frac{1}{2} \\
-\frac{1}{2} & -\frac{1}{2} & 1
\end{pmatrix}
\]

\[
\frac{1}{2}
\begin{pmatrix}
0 & -1 & 0 \\
-1 & 6 & -1 \\
0 & -1 & 0
\end{pmatrix}
\]

\[f - \Delta f \]

\[
\begin{pmatrix}
0 & 1 & 0 \\
1 & -4 & 1 \\
0 & 1 & 0
\end{pmatrix}
\]

\[
\begin{pmatrix}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{pmatrix}
\]

\[f - \begin{pmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{pmatrix} f + \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} f \]

\[
\begin{pmatrix}
0 & -1 & 0 \\
-1 & 5 & -1 \\
0 & -1 & 0
\end{pmatrix}
\]

Why does the sign make a difference?

How can you write the filter that makes the sharpened image?
Unsharp masking

\[
\left[\frac{1}{1-\alpha} \left(f - \alpha B \ast f \right) \right]
\]

\[\alpha = \|f\|_2 \left(\|f\|_1 + 1 \right)\]