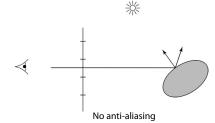
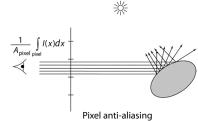
Reading **Required:** • Shirley, 13.11, 14.1-14.3 Further reading: • A. Glassner. An Introduction to Ray Tracing. Academic Press, 1989. [In the lab.] **Distribution Ray Tracing** • Robert L. Cook, Thomas Porter, Loren Carpenter. "Distributed Ray Tracing." Computer Graphics (Proceedings of SIGGRAPH 84). 18 (3). pp. 137-**Brian Curless** 145. 1984. CSE 557 • James T. Kajiya. "The Rendering Equation." Fall 2014 Computer Graphics (Proceedings of SIGGRAPH 86). *20 (4)*. pp. 143-150. 1986.

1

Pixel anti-aliasing





All of this assumes that inter-reflection behaves in a mirror-like fashion...

BRDF

The diffuse+specular parts of the Blinn-Phong illumination model are a mapping from light to viewing directions:

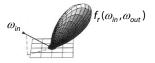
$$I = I_{L}B \left[k_{d}(\mathbf{N} \cdot \mathbf{L}) + k_{s} \left(\mathbf{N} \cdot \frac{\mathbf{L} + \mathbf{V}}{\|\mathbf{L} + \mathbf{V}\|} \right)_{+}^{n_{s}} \right]$$
$$= I_{L} f_{r}(\mathbf{L}, \mathbf{V})$$

The mapping function f_r is often written in terms of incoming (light) directions $\omega_{\rm in}$ and outgoing (viewing) directions $\omega_{\rm out}$:

$$f_r(\omega_{in}, \omega_{out})$$
 or $f_r(\omega_{in} \to \omega_{out})$

This function is called the **Bi-directional Reflectance Distribution Function** (**BRDF**).

Here's a plot with ω_{in} held constant:



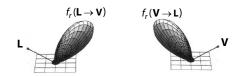
BRDF's can be quite sophisticated...

Light reflection with BRDFs

BRDF's exhibit Helmholtz reciprocity:

$$f_r(\omega_{in} \to \omega_{out}) = f_r(\omega_{out} \to \omega_{in})$$

That means we can take two equivalent views of reflection. Suppose $\omega_{in} = \mathbf{L}$ and $\omega_{out} = \mathbf{V}$:



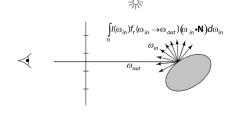
We can now think of the BRDF as weighting light coming in from all directions, which can be added up:

$$I(\mathbf{V}) = \int_{U} I(\mathbf{L}) f_r(\mathbf{L} \to \mathbf{V}) (\mathbf{L} \cdot \mathbf{N}) d\mathbf{L}$$

Or, written more generally:

$$I(\omega_{out}) = \int_{H} I(\omega_{in}) f_r(\omega_{in} \to \omega_{out}) (\omega_{in} \cdot \mathbf{N}) d\omega_{in}$$

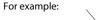
Reflection anti-aliasing



Reflection anti-aliasing

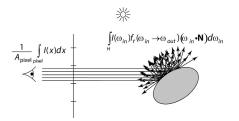
Simulating gloss and translucency

The mirror-like form of reflection, when used to approximate glossy surfaces, introduces a kind of aliasing, because we are under-sampling reflection (and refraction).



Distributing rays over reflection directions gives:

Pixel and reflection anti-aliasing

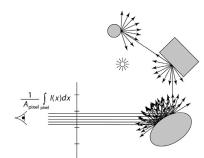


Pixel and reflection anti-aliasing

5

8

Full anti-aliasing



Full anti-aliasing...lots of nested integrals!

Computing these integrals is prohibitively expensive, especially after following the rays recursively.

We'll look at ways to approximate high-dimensional integrals...

Approximating integrals (cont'd)

We can also do uneven sampling:

Our approximate integral value is then something like:

$$F \approx \sum_{i=1}^{n} f(x_i) \Delta x_i$$

where we have sampled *n* times at variable spacing Δx_{r}

We can think of the Δx_i as weights on the samples.

Q: When the *x*_{*i*} are more closely spaced, do they get larger or smaller weight?

Q: Which *x*_{*i*} should we pick?

Approximating integrals

Let's say we want to compute the integral of a function:

 $F = \int f(x) dx$

If f(x) is not known analytically (or is not easy to integrate), but can be readily evaluated, then we can approximate the integral by sampling.

Our approximate integral value is then something like:

 $F \approx \sum_{i=1}^{n} f(i\Delta x) \Delta x$

where we have sampled *n* times at spacing Δx .

Evaluating an integral in this manner is called **quadrature**.

Q: What happens if we have integrals over *d* dimensions, sampling *n* times in each dimension?

A good approach to distributing samples unevenly across many dimensions is to do so **stochastically**.

A stochastic approach

Quick review first... For 1D, let's say the position in x is a random variable X, which is distributed according to p(x), a probability density function (non-negative, integrates to unity). Then:

$E[X] \equiv$	
$V[\mathcal{X}] \equiv$	
E[kX] =	
V[kX] =	
E[g(X)] =	
V[g(X)] =	
We can also show that for independent ran variables <i>X</i> and <i>Y</i> :	dom

E[X + Y] =

V[X + Y] =

11

9

Monte Carlo integration

Consider this function of a random variable:

 $\frac{f(X)}{p(X)}$

where f(x) is the function we'd like to integrate. What is its expected value?

Computing this expected value requires the analytic integral *F*, which is not available.

Monte Carlo integration (cont'd)

Instead, we can estimate the expected value of f(X)/p(X) (and thus the integral *F*) as:

 $\tilde{F} = \frac{1}{n} \sum_{i=1}^{n} \frac{f(X_i)}{p(X_i)}$

where the X_i are independent and identically distributed (i.i.d.) random variables, each with distribution p(x).

This procedure is known as Monte Carlo integration.

Note that \tilde{F} is a random variable built by summing over functions of random variables $f(X_j)/p(X_j)$, where each of these functions of a random variable is itself a random variable. What is its expected value of \tilde{F} ?

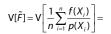
$$\mathsf{E}[\tilde{F}] = \mathsf{E}\left[\frac{1}{n}\sum_{i=1}^{n}\frac{f(X_i)}{p(X_i)}\right] =$$

14

Monte Carlo integration (cont'd)

OK, so now we can say that \tilde{F} is a random variable with expected value equal to F.

What is the variance of this random variable?



Uniform sampling

Suppose that the unknown function we are integrating happens to be a normalized box function of width *a*.

 $f(x) = \begin{cases} 1/a & |x| \le a/2 \\ 0 & \text{otherwise} \end{cases}$

Suppose we now try to estimate the integral of f(x) with uniform sampling over an interval of width w (i.e., choosing X from a uniform distribution):

$$p(x) = \begin{cases} 1/w & |x| \le w/2 \\ 0 & \text{otherwise} \end{cases}$$

where $w \ge a$.

If we can get the variance to 0, then \tilde{F} must be a single value which must be equal to F. Getting to 0 is hard, but getting to low variance is an important goal.

What variables and/or functions are under our control here?

Importance sampling

A better approach, if f(x) is non-negative, would be to choose $p(x) \sim f(x)$. In fact, this choice would be optimal.

Stratified sampling

An improvement on importance sampling is **stratified sampling**.

The idea is that, given your probability function:

- You can break it up into bins of equal probability area (i.e., equal likelihood).
- Then choose a sample from each bin.

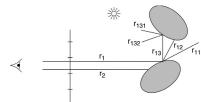
Why don't we just do that?

Alternatively, we can use heuristics to guess where f(x) will be large and choose p(x) based on those heuristics. This approach is called **importance sampling**.

17

Summing over ray paths

We can think of this problem in terms of enumerated rays:



The intensity at a pixel is the sum over the primary rays: $1 r^{n}$

$$I_{pixel} = \frac{1}{n} \sum_{i} I(r_i)$$

For a given primary ray, its intensity depends on secondary rays:

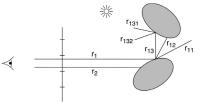
$$I(\mathbf{r}_i) = \sum_j I(\mathbf{r}_{ij}) f_r(\mathbf{r}_{ij} \to \mathbf{r}_i)$$

Substituting back in:

$$I_{pixel} = \frac{1}{n} \sum_{i} \sum_{j} I(r_{ij}) f_r(r_{ij} \rightarrow r_i)$$

19

Summing over ray paths



We can incorporate tertiary rays next:

$$I_{pixel} = \frac{1}{n} \sum_{i} \sum_{j} \sum_{k} I(r_{ijk}) f_r(r_{ijk} \rightarrow r_{ij}) f_r(r_{ij} \rightarrow r_i)$$

Each triple i,j,k corresponds to a ray path:

 $r_{ijk} \rightarrow r_{ij} \rightarrow r_i$

So, we can see that ray tracing is a way to approximate a complex, nested light transport integral with a summation over ray paths (of arbitrary length!).

Problem: too expensive to sum over all paths.

Solution: choose a small number of "good" paths.

Glossy reflection revisited

Let's return to the glossy reflection model, and modify it – for purposes of illustration – as follows:

We can visualize the span of rays we want to integrate over, within a pixel:

One pixel

21

Monte Carlo path tracing

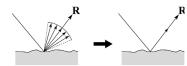
Let' return to our original (simplified) glossy reflection model:

An alternative way to follow rays is by making random decisions along the way – a.k.a., Monte Carlo path tracing. If we distribute rays uniformly over pixels and reflection directions, we get:

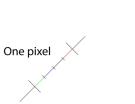
One pixel

Whitted ray tracing

Returning to the reflection example, Whitted ray tracing replaces the glossy reflection with mirror reflection:



Thus, we render with anti-aliasing as follows:



Importance sampling

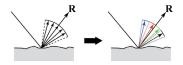
The problem is that lots of samples are "wasted." Using again our glossy reflection model:

Let's now randomly choose rays, but according to a probability that favors more important reflection directions, i.e., use **importance sampling**:

One pixel

Stratified sampling

We still have a problem that rays may be clumped together. We can improve on this by splitting reflection into zones:



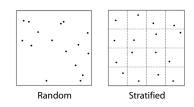
Now let's restrict our randomness to within these zones, i.e. use **stratified sampling**:

One pixel

25

Stratified sampling of a 2D pixel

Here we see pure uniform vs. stratified sampling over a 2D pixel (here 16 rays/pixel):



The stratified pattern on the right is also sometimes called a **jittered** sampling pattern.

One interesting side effect of these stochastic sampling patterns is that they actually injects noise into the solution (slightly grainier images). This noise tends to be less objectionable than aliasing artifacts.

Distribution ray tracing

These ideas can be combined to give a particular method called **distribution ray tracing** [Cook84]:

- uses non-uniform (jittered) samples.
- replaces aliasing artifacts with noise.
- provides additional effects by distributing rays to sample:
 - Reflections and refractions
 - Light source area
 - Camera lens area
 - Time

[This approach was originally called "distributed ray tracing," but we will call it distribution ray tracing (as in probability distributions) so as not to confuse it with a parallel computing approach.]

DRT pseudocode

TraceImage() looks basically the same, except now each pixel records the average color of jittered sub-pixel rays.

function traceImage (scene):

for each pixel (i, j) in image do

l(i, j) ← 0

for each sub-pixel id in (i,j) do

 $\textbf{s} \gets \textit{pixelToWorld}(jitter(i, j, id))$

p ← COP

 $\textbf{d} \leftarrow (\textbf{s} - \textbf{p}).normalize()$

 $I(i, j) \leftarrow I(i, j) + \textit{traceRay}(\text{scene}, \mathbf{p}, \mathbf{d}, \text{id})$

end for

 $I(i, j) \leftarrow I(i, j)/numSubPixels$

end for

end function

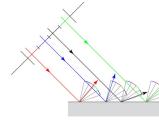
A typical choice is numSubPixels = 5*5.

DRT pseudocode (cont'd)

Now consider *traceRay*(), modified to handle (only) opaque glossy surfaces:

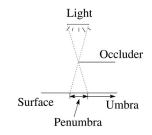
 $\begin{aligned} & \text{function } traceRay(\text{scene}, \textbf{p}, \textbf{d}, \text{id}): \\ & (\textbf{q}, \textbf{N}, \text{material}) \leftarrow intersect(\text{scene}, \textbf{p}, \textbf{d}) \\ & \textbf{l} \leftarrow shade(\dots) \\ & \textbf{R} \leftarrow jitteredReflectDirection(\textbf{N}, -\textbf{d}, \text{material}, \text{id}) \\ & \textbf{l} \leftarrow \textbf{l} + \text{material.k}_r * traceRay(\text{scene}, \textbf{q}, \textbf{R}, \text{id}) \\ & \textbf{return l} \end{aligned}$

end function



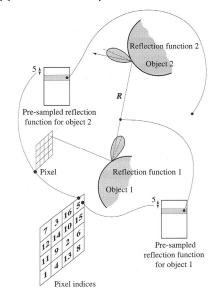
29

Soft shadows



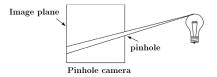
Distributing rays over light source area gives:

Pre-sampling glossy reflections (Quasi-Monte Carlo)

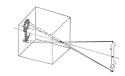


The pinhole camera

The first camera - "camera obscura" - known to Aristotle.



In 3D, we can visualize the blur induced by the pinhole (a.k.a., **aperture**):



Q: How would we reduce blur?

Shrinking the pinhole

LUZ

OPTICA

aperture?

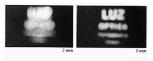
Q: What happens as we continue to shrink the

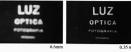
LUZ

OPTICA

Shrinking the pinhole, cont'd

Diffraction



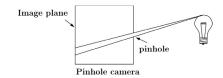


DPTICA

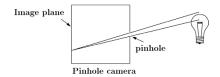
33

The pinhole camera, revisited

We can think in terms of light heading toward the image plane:

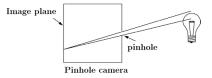


We can equivalently turn this around by following rays from the viewer:

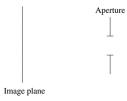


The pinhole camera, revisited

Given this flipped version:



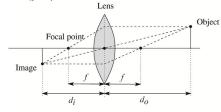
how can we simulate a pinhole camera more accurately?



Lenses

Pinhole cameras in the real world require small apertures to keep the image in focus.

Lenses focus a bundle of rays to one point => can have larger aperture.



For a "thin" lens, we can approximately calculate where an object point will be in focus using the the Gaussian lens formula:

$$\frac{1}{d_i} + \frac{1}{d_o} = \frac{1}{f}$$

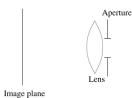
where f is the **focal length** of the lens.

37

39

Simulating depth of field

Consider how rays flow between the image plane and the in-focus plane:



Plane in focus

We can model this as simply placing our image plane at the in-focus location, in *front* of the finite aperture, and then distributing rays over the aperture (instead of the ideal center of projection):

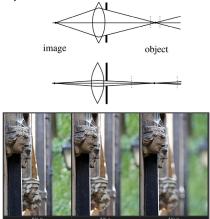
Aperture

Image plane (scaled up and positioned at in-focus depth)

Depth of field

Lenses do have some limitations. The most noticeable is the fact that points that are not in the object plane will appear out of focus.

The **depth of field** is a measure of how far from the object plane points can be before appearing "too blurry."



http://www.cambridgeincolour.com/tutorials/depth-of-field.htm

Simulating depth of field, cont'd

Chaining the ray id's

In general, you can trace rays through a scene and keep track of their id's to handle *all* of these effects:

Light source 0 Pixel Lens Object

DRT to simulate ___

Distributing rays over time gives:

41