
1

Parametric curves

Brian Curless

CSE 557

Fall 2013

2

Reading

Required:

� Shirley 2.5, Chapter 15

Optional

� Bartels, Beatty, and Barsky. An Introduction

to Splines for use in Computer Graphics and

Geometric Modeling, 1987.

� Farin. Curves and Surfaces for CAGD: A

Practical Guide, 4th ed., 1997.

3

Curves before computers

The “loftsman’s spline”:

� long, narrow strip of wood or metal

� shaped by lead weights called “ducks”

� gives curves with second-order continuity,

usually

Used for designing cars, ships, airplanes, etc.

But curves based on physical artifacts can’t be

replicated well, since there’s no exact definition of

what the curve is.

Around 1960, a lot of industrial designers were

working on this problem.

Today, curves are easy to manipulate on a computer

and are used for CAD, art, animation, …

4

Mathematical curve representation

� Explicit y=f(x)
• what if the curve isn’t a function, e.g., a circle?

� Implicit g(x,y) = 0

� Parametric Q(u) = (x(u),y(u))
• For the circle:

x(u) = cos 2πu

y(u) = sin 2πu

5

Parametric polynomial curves

We’ll use parametric curves, Q(u)=(x(u),y(u)), where the

functions are all polynomials in the parameter.

Advantages:

� easy (and efficient) to compute

� infinitely differentiable (all derivatives above the

nth derivative are zero)

We’ll also assume that u varies from 0 to 1.

Note that we’ll focus on 2D curves, but the

generalization to 3D curves is completely

straightforward.

∑

∑

=

=

=

=

n

k

k
k

n

k

k
k

ubuy

uaux

0

0

)(

)(

6

Recursive interpolation:

What if u=0?

What if u=1?

de Casteljau’s algorithm

7

Recursive notation:

What is the equation for ?

de Casteljau’s algorithm, cont’d

1

0V

8

Finding Q(u)

Let’s solve for Q(u):

1

0 0 1

1

1 1 2

1

2 2 3

2 1 1

0 0 1

2 1 1

1 1 2

2 2

0 1

1 1 1 1

0 1 1 2

0 1 1 2

3 2

0 1

(1-)

(1-)

(1-)

(1-)

(1-)

() (1-)

(1-)[(1-)] [(1-)]

(1-)[(1-){(1-) } {(1-) }] ...

(1-) 3 (1-)

V u V uV

V u V uV

V u V uV

V u V uV

V u V uV

Q u u V uV

u u V uV u u V uV

u u u V uV u u V uV

u V u u V

= +

= +

= +

= +

= +

= +

= + + +
= + + + +

= + 2 3

2 33 (1-)u u V u V+ +

9

Finding Q(u) (cont’d)

In general,

where “n choose i” is:

This defines a class of curves called Bézier curves.

What’s the relationship between the number of
control points and the degree of the polynomials?

0

() (1)
n

i n i

i

i

n
Q u u u V

i

−

=

 
= − 

 
∑

!

()! !

n n

i n i i

 
=   −

10

Bernstein polynomials

We can take the polynomial form:

and re-write it as:

where the bi(u) are the Bernstein polynomials:

We can also expand the equation for Q(u) to remind

us that it is composed of polynomials x(u) and y(u):

0

() (1)
n

i n i

i

i

n
Q u u u V

i

−

=

 
= − 

 
∑

0

0 0

0

()
()

() () ()
()

()

n
n

i in n
iin n

i i i n
i i i n

i i

i

x b u
x x u

Q u b u V b u
y y u

y b u

=

= =

=

 
    
 = = = =   
    
 
 

∑
∑ ∑

∑

0

() ()
n

n

i i

i

Q u b u V
=

=∑

() (1)n i n i

i

n
b u u u

i

− 
≡ − 
 

11

Bernstein polynomials, cont’d

For degree 3, the Bernstein polynomials are:

Useful properties (for Bernstein polynomials of any degree) on
the interval [0,1]:

� The sum of all four is exactly 1 for any u. (We say the
curves form a “partition of unity”).

� Each polynomial has value between 0 and 1.

These together imply that the curve is generated by convex
combinations of the control points and therefore lies within
the convex hull of those control points.

The convex hull of a point set is the smallest convex polygon
(in 2D) or polyhedron (in 3D) enclosing the points. In 2D, think
of a string looped around the outside of the point set and then
pulled tightly around the set.

3 3

0

3 2

1

3 2

2

3 3

3

() (1)

() 3 (1)

() 3 (1)

()

b u u

b u u u

b u u u

b u u

= −

= −

= −

=

12

Displaying Bézier curves

How could we draw one of these things?

13

Adaptive Sampling of Bézier curves

Suppose the control points are arranged as follows:

How many line segments do you really need to draw?

It would be nice if we had an adaptive algorithm, that

would take into account flatness.

DisplayBezier(V0, V1, V2, V3)

begin

if (FlatEnough(V0, V1, V2, V3))

Line(V0, V3);

else

something;

end;
14

Subdivide and conquer

DisplayBezier(V0, V1, V2, V3)

begin

if (FlatEnough(V0, V1, V2, V3))

Line(V0, V3);

else

Subdivide(V[]) ⇒ L[], R[]

DisplayBezier(L0, L1, L2, L3);

DisplayBezier(R0, R1, R2, R3);

end;

15

Testing for flatness

Compare total length of control polygon to

length of line connecting endpoints:

0 1 1 2 2 3

0 3

1
V V V V V V

V V
ε

− + − + −
< +

−

16

Curve desiderata

Bézier curves offer a fairly simple way to model

parametric curves.

But, let’s consider some general properties we would

like curves to have…

17

Local control

One problem with Béziers is that every control point

affects every point on the curve (except the

endpoints).

Moving a single control point affects the whole curve!

We’d like to have local control, that is, have each

control point affect some well-defined neighborhood

around that point.

18

Interpolation

Bézier curves are approximating. The curve does

not (necessarily) pass through all the control points.

Each point pulls the curve toward it, but other points

are pulling as well.

We’d like to have a curve that is interpolating, that is,

that always passes through every control point.

19

Continuity

We want our curve to have continuity: there

shouldn’t be any abrupt changes as we move along

the curve.

“0th order” continuity would mean that curve doesn’t

jump from one place to another.

We can also look at derivatives of the curve to get

higher order continuity.

20

1st and 2nd Derivative Continuity

First order continuity implies continuous first

derivative:

Let’s think of u as “time” and Q(u) as the path of a

particle through space. What is the meaning of the

first derivative, and which way does it point?

Second order continuity means continuous second

derivative:

What is the intuitive meaning of this derivative?

=
()

'()
dQ u

Q u
du

=
2

2

()
''()

d Q u
Q u

du

21

C
n (Parametric) Continuity

In general, we define Cn continuity as follows:

Note: these are nested degrees of continuity:

C-1: C0:

C1, C2 : C3, C4, …:

= ≤ ≤()

() is continuous

iff

()
() is continuous for 0

n

i
i

i

Q u C

d Q u
Q u i n

du

22

Reparameterization

We have so far been considering parametric

continuity, derivatives w.r.t. the parameter u.

This form of continuity makes sense particularly if we

really are describing a particle moving over time and

want its motion (e.g., velocity and acceleration) to be

smooth.

But, what if we’re thinking only in terms of the shape

of the curve? Is the parameterization actually intrinsic

to the shape, i.e., is it the case that a shape has only

one parameterization?

23

Arc length parameterization

We can reparameterize a curve so that equal steps in

parameter space (we’ll call this new parameter “s”)

map to equal distances along the curve:

We call this an arc length parameterization. We can

re-write the equal step requirement as:

Looking at very small steps, we find:

[]⇒ ∆ = − =2 1 1 2() (), ()Q s s s s arclength Q s Q s

[] =
−

1 2

2 1

(), ()
1

arclength Q s Q s

s s

[]
→

= =
−2 1

1 2

2 1

(), () ()
lim 1
s s

arclength Q s Q s dQ s

s s ds

24

G
n (Geometric) Continuity

Now, we define geometric Gn continuity as follows:

Where Q(s) is parameterized by arc length.

The first derivative still points along the tangent, but

its length is always 1.

Gn continuity is usually a weaker constraint than Cn

continuity (e.g., “speed” along the curve does not

matter).

()

() is continuous

iff

()
() is continuous for 0

n

i
i

i

Q s G

d Q s
Q s i n

ds
= ≤ ≤

25

G
n Continuity (cont’d)

The second derivative now has a specific geometric

interpretation. First, the “osculating circle” at a point on

a curve can be defined based on the limit behavior of

three points moving toward each other:

The second derivative Q’’(s) then has these properties:

where r(s) and c(s) are the radius and center of O(s),

respectively, and κ(s) is the “curvature” of the curve at s.

We’ll focus on Cn (i.e., parametric) continuity of curves

for the remainder of this lecture.

1 2 3
1 2 3, ,

() lim (, ,)
s s s s

O s O s s s
→

=

1()Q s

()Q s3()Q s

1 2 3(, ,) O s s s

()O s

2()Q s

1
() ()

()
Q s s

r s
κ′′ = = () () ()Q s s Q s′′ −c�

c
r

26

Bézier curves � splines

Bézier curves have C-infinity continuity on their

interiors, but we saw that they do not exhibit local

control or interpolate their control points.

It is possible to define points that we want to

interpolate, and then solve for the Bézier control

points that will do the job.

But, you will need as many control points as

interpolated points -> high order polynomials ->

wiggly curves. (And you still won’t have local control.)

Instead, we’ll splice together a curve from individual

Béziers segments, in particular, cubic Béziers.

We call these curves splines.

The primary concern when splicing cuves together is

getting good continuity at the endpoints where they

meet…

27

Ensuring C0 continuity

Suppose we have a cubic Bézier defined by

(V0,V1,V2,V3), and we want to attach another curve

(W0,W1,W2,W3) to it, so that there is C0 continuity at

the joint.

What constraint(s) does this place on (W0,W1,W2,W3)?

=0 : (1) (0)V WC Q Q

28

The C0 Bezier spline

How then could we construct a curve passing through

a set of points P1…Pn?

We call this curve a spline. The endpoints of the

Bezier segments are called joints. All other Bezier

points (i.e., not endpoints) are called inner Bezier

points; these points are generally not interpolated.

In the animator project, you will construct such a

curve by specifying all the Bezier control points

directly.

29

For degree 3 (cubic) curves, we have already shown

that we get:

We can expand the terms in u and rearrange to get:

What then is the first derivative when evaluated at

each endpoint, u=0 and u=1?

1st derivatives at the endpoints

= + + +3 2 2 3

0 1 2 3() (1-) 3 (1-) 3 (1-)Q u u V u u V u u V u V

= − + − + +

− + + − + +

3

0 1 2 3

2

0 1 2 0 1 0

() (3 3)

 (3 6 3) (3 3)

Q u V V V V u

V V V u V V u V

′ =

′ =

(0)

(1)

Q

Q

30

Ensuring C1 continuity

Suppose we have a cubic Bézier defined by

(V0,V1,V2,V3), and we want to attach another curve

(W0,W1,W2,W3) to it, so that there is C1 continuity at the

joint.

What constraint(s) does this place on (W0,W1,W2,W3)?

1

' '

(1) (0)
:

(1) (0)

V W

V W

Q Q
C

Q Q

 =
 =

31

The C1 Bezier spline

How then could we construct a curve passing through

a set of points P0…Pn?

We can specify the Bezier control points directly, or we

can devise a scheme for placing them automatically…

32

Catmull-Rom splines

If we set each derivative to be one half of the vector

between the previous and next controls, we get a

Catmull-Rom spline.

This leads to:

=
= +

=
=

0 1

1 1 2 0

2 2 3 1

3 2

1
6

1
6

(-)

- (-)

V P

V P P P

V P P P

V P

33

Catmull-Rom to Beziers

We can write the Catmull-Rom to Bezier

transformation as:

0 0

1 1

2 2

3 3

0 1 0 0

1/ 6 1 1/ 6 0

0 1/ 6 1 1/ 6

0 0 1 0

T T

T T

T T

T T

V P

V P

V P

V P

    
    −    =
    −
    
       

Catmull-RomV = M P

34

Endpoints of Catmull-Rom splines

We can see that Catmull-Rom splines don’t interpolate

the first and last control points.

By repeating those control points, we can force

interpolation.

35

We can give more control by exposing the derivative

scale factor as a parameter:

The parameter τ controls the tension. Catmull-Rom

uses τ = 1/2. Here’s an example with τ =3/2.

Tension control

τ

τ

=
= +

=
=

0 1

1 1 2 0

2 2 3 1

3 2

3

3

(-)

- (-)

V P

V P P P

V P P P

V P

36

2nd derivatives at the endpoints

Finally, we’ll want to develop C2 splines. To do this,

we’ll need second derivatives of Bezier curves.

Taking the second derivative of Q(u) yields:

′′ = +
= +

′′ = +
= +

0 1 2

1 0 1 2

1 2 3

2 3 2 1

(0) 6(- 2)

-6[(-) (-)]

(1) 6(- 2)

-6[(-) (-)]

Q V V V

V V V V

Q V V V

V V V V

37

Ensuring C2 continuity

Suppose we have a cubic Bézier defined by

(V0,V1,V2,V3), and we want to attach another curve

(W0,W1,W2,W3) to it, so that there is C2 continuity at the

joint.

What constraint(s) does this place on (W0,W1,W2,W3)?

2 ' '

'' ''

(1) (0)

: (1) (0)

(1) (0)

V W

V W

V W

Q Q

C Q Q

Q Q

 =
 =
 =

38

Building a complex spline

Instead of specifying the Bézier control points

themselves, let’s specify the corners of the A-frames in

order to build a C2 continuous spline.

These are called B-splines. The starting set of points

are called de Boor points.

39

B-splines

Here is the completed B-spline.

What are the Bézier control points, in terms of the de

Boor points?

0 0 1

1 2

0 1 2

1 1 2

2 1 2

3 1 2 3

____[____ ____]

____[____ ____]

____ ____ ____

____ ____

____ ____

____ ____ ____

V B B

B B

B B B

V B B

V B B

V B B B

= +
+ +
= + +
= +
= +
= + +

40

B-splines to Beziers

We can write the B-spline to Bezier transformation as:

0 0

1 1

2 2

3 3

1/ 6 2 / 3 1/ 6 0

0 2 / 3 1/ 3 0

0 1/ 3 2 / 3 0

0 1/ 6 2 / 3 1/ 6

T T

T T

T T

T T

V B

V B

V B

V B

    
    
    =
    
    
       

B-splineV = M B

41

Endpoints of B-splines

As with Catmull-Rom splines, the first and last control

points of B-splines are generally not interpolated.

Again, we can force interpolation by repeating the

endpoints…twice.

42

What if we want a closed curve, i.e., a loop?

With Catmull-Rom and B-spline curves, this is easy:

Closing the loop

43

In the animator project, you will draw a curve on the

screen:

You will actually treat this curve as:

Where θ is a variable you want to animate. We can

think of the result as a function:

In general, you have to apply some constraints to

make sure that θ(t) actually is a function.

Curves in the animator project

()=() (), ()u x u y uQ

θ =
=

() ()

() ()

u y u

t u x u

θ()t

44

