5. Shading

Introduction

Affine transformations help us to place objects into a scene.

Before creating images of these objects, we’ll look at models for how light interacts with their surfaces.

Such a model is called a shading model.

Other names:

- Lighting model
- Light reflection model
- Local illumination model
- Reflectance model
- BRDF

An abundance of photons

Properly determining the right color is really hard.

Look around the room. Each light source has different characteristics. Trillions of photons are pouring out every second.

These photons can:

- interact with the atmosphere, or with things in the atmosphere
- strike a surface and
 - be absorbed
 - be reflected (scattered)
 - cause fluorescence or phosphorescence.
- interact in a wavelength-dependent manner
- generally bounce around and around

Reading

Required:

- Watt, sections 6.2-6.3

Optional:

- Watt, chapter 7.
Our problem

We’re going to build up to an approximation of reality called the **Phong illumination model**.

It has the following characteristics:

- not physically based
- gives a first-order approximation to physical light reflection
- very fast
- widely used

In addition, we will assume **local illumination**, i.e., light goes: light source -> surface -> viewer.

No interreflections, no shadows.

Setup…

![Diagram](image)

Given:

- a point \(P \) on a surface visible through pixel \(p \)
- The normal \(N \) at \(P \)
- The lighting direction, \(L \), and intensity, \(I \), at \(P \)
- The viewing direction, \(V \), at \(P \)
- The shading coefficients at \(P \)

Compute the color, \(I \), of pixel \(p \).

Assume that the direction vectors are normalized:

\[
\|N\| = \|L\| = \|V\| = 1
\]

Iteration zero

The simplest thing you can do is…

Assign each polygon a single color:

\[
I = k_e
\]

where

- \(I \) is the resulting intensity
- \(k_e \) is the **emissivity** or intrinsic shade associated with the object

This has some special-purpose uses, but not really good for drawing a scene.

[Note: \(k_e \) is omitted in Watt.]

Iteration one

Let’s make the color at least dependent on the overall quantity of light available in the scene:

\[
I = k_e + k_\alpha I_a
\]

- \(k_\alpha \) is the **ambient reflection coefficient**.
 - really the reflectance of ambient light
 - “ambient” light is assumed to be equal in all directions
- \(I_a \) is the **ambient intensity**.

Physically, what is “ambient” light?
Wavelength dependence

Really, k_a, k_o, and l_a are functions over all wavelengths λ.

Ideally, we would do the calculation on these functions. For the ambient shading equation, we would start with:

$$I(\lambda) = k_o(\lambda)l_a(\lambda)$$

then we would find good RGB values to represent the spectrum $I(\lambda)$.

Traditionally, though, k_a and l_a are represented as RGB triples, and the computation is performed on each color channel separately:

$$I_R = k_{a,R} l_{a,R}$$
$$I_G = k_{a,G} l_{a,G}$$
$$I_B = k_{a,B} l_{a,B}$$

Diffuse reflectors

Diffuse reflection occurs from dull, matte surfaces, like latex paint, or chalk.

These diffuse or Lambertian reflectors reradiate light equally in all directions.

Picture a rough surface with lots of tiny microfacets.

Diffuse reflectors, cont.

…or picture a surface with little pigment particles embedded beneath the surface (neglect reflection at the surface for the moment):

The microfacets and pigments distribute light rays in all directions.

Embedded pigments are responsible for the coloration of diffusely reflected light in plastics and paints.

Note: the figures above are intuitive, but not strictly (physically) correct.
Iteration two

The incoming energy is proportional to \(_\text{______}\), giving the diffuse reflection equations:

\[
I = k_e + k_d I_o + k_r I_i \quad \text{______}
\]

\[
= k_e + k_d I_o + k_r I_i (\quad)
\]

where:
- \(k_d \) is the **diffuse reflection coefficient**
- \(I_o \) is the intensity of the light source
- \(N \) is the normal to the surface (unit vector)
- \(L \) is the direction to the light source (unit vector)
- \((x)_+\) means \(\max (0,x)\)

[Note: Watt uses \(I_i \) instead of \(I_f \).]

Specular reflection

Specular reflection accounts for the highlight that you see on some objects.

It is particularly important for smooth, shiny surfaces, such as:
- metal
- polished stone
- plastics
- apples
- skin

Properties:
- Specular reflection depends on the viewing direction \(V \).
- For non-metals, the color is determined solely by the color of the light.
- For metals, the color may be altered (e.g., brass)

Specular reflection “derivation”

For a perfect mirror reflector, light is reflected about \(N \), so

\[
I = \begin{cases}
I_i & \text{if } V = R \\
0 & \text{otherwise}
\end{cases}
\]

For a near-perfect reflector, you might expect the highlight to fall off quickly with increasing angle \(\phi \).

Also known as:
- “rough specular” reflection
- “directional diffuse” reflection
- “glossy” reflection

Derivation, cont.

One way to get this effect is to take \((R \cdot V)\), raised to a power \(\text{s} \).

As \(\text{s} \) gets larger,
- the dropoff becomes \(\text{more,less} \) gradual
- gives a \(\text{larger,smaller} \) highlight
- simulates a \(\text{more,less} \) mirror-like surface
Iteration three

The next update to the Phong shading model is then:

\[I = k_e + k_d l_a + k_a l_i (N \cdot L)_a + k_s l_i (V \cdot R)_s \]

where:
- \(k_e \) is the **specular reflection coefficient**
- \(n_s \) is the **specular exponent** or shininess
- \(R \) is the reflection of the light about the normal (unit vector)
- \(V \) is viewing direction (unit vector)

[Note: Watt uses \(n \) instead of \(n_s \).]

Intensity drop-off with distance

OpenGL supports different kinds of lights: point, directional, and spot.

For point light sources, the laws of physics state that the intensity of a point light source must drop off inversely with the square of the distance.

We can incorporate this effect by multiplying \(I \), by \(1/d^2 \).

Sometimes, this distance-squared dropoff is considered too “harsh.” A common alternative is:

\[f_{atten}(d) = \frac{1}{a + bd + cd^2} \]

with user-supplied constants for \(a, b, \) and \(c \).

[Note: not discussed in Watt.]

Choosing the parameters

Experiment with different parameter settings. To get you started, here are a few suggestions:
- Try \(n_s \) in the range [0,100]
- Try \(k_a + k_d + k_s < 1 \)
- Use a small \(k_a \) (~0.1)

<table>
<thead>
<tr>
<th>Medium</th>
<th>(n_s)</th>
<th>(k_d)</th>
<th>(k_s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metal</td>
<td>large</td>
<td>Small, color of metal</td>
<td>Large, color of metal</td>
</tr>
<tr>
<td>Plastic</td>
<td>medium</td>
<td>Medium, color of plastic</td>
<td>Medium, white</td>
</tr>
<tr>
<td>Planet</td>
<td>0</td>
<td>varying</td>
<td>0</td>
</tr>
</tbody>
</table>
BRDF

The Phong illumination model is really a function that maps light from incoming (light) directions to outgoing (viewing) directions:

\[f_r(\omega_{in}, \omega_{out}) \]

This function is called the **Bi-directional Reflectance Distribution Function** (BRDF).

Here’s a plot with \(\omega_{in} \) held constant:

Physically valid BRDF’s obey Helmholtz reciprocity:

\[f_r(\omega_{in}, \omega_{out}) = f_r(\omega_{out}, \omega_{in}) \]

and should conserve energy (no light amplification).

More sophisticated BRDF’s

Cook and Torrance, 1982

Westin, Arvo, Torrance 1992