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2. Sampling theory
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Reading

Required:

Watt, Section 14.1

Recommended:

Don P. Mitchell and Arun N. Netravali,
“Reconstruction Filters in Computer Computer 
Graphics ,” Computer Graphics, (Proceedings of 
SIGGRAPH 88). 22 (4), pp. 221-228, 1988.
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What is an image?

We can think of an image as a function, f, from R2 to 
R:

f( x, y ) gives the intensity of a channel at 
position ( x, y ) 
Realistically, we expect the image only to be 
defined over a rectangle, with a finite range:

• f: [a,b]x[c,d] [0,1]

A color image is just three functions pasted together.  
We can write this as a “vector-valued” function:

We’ll focus in grayscale (scalar-valued) images  for 
now.
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Images as functions
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Digital images

In computer graphics, we usually create or operate 
on digital (discrete) images:

Sample the space on a regular grid

Quantize each sample (round to nearest 
integer)

If our samples are ∆ apart, we can write this as:

f[i ,j] = Quantize{ f(i ∆, j ∆) }

i

j
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Motivation: filtering and resizing

What if we now want to:

smooth an image?

sharpen an image?

enlarge an image?

shrink an image?

Before we try these operations, it’s helpful to think 
about images in a more mathematical way…
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Fourier transforms

We can represent functions as a weighted sum of 
sines and cosines.

We can think of a function in two complementary 
ways:

Spatially in the spatial domain

Spectrally in the frequency domain

The Fourier transform and its inverse convert 
between these two domains:
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1D Fourier examples
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2D Fourier transform
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Convolution

One of the most common methods for filtering a 
function is called convolution.

In 1D, convolution is defined as:
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Convolution in 2D

In two dimensions, convolution becomes:
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Convolution theorems

Convolution theorem: Convolution in the spatial
domain is equivalent to multiplication in the 
frequency domain.

Symmetric theorem: Convolution in the frequency
domain is equivalent to multiplication in the spatial
domain.

f h F H∗ ←→ ⋅

f h F H⋅ ←→ ∗
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1D convolution theorem example
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2D convolution theorem example
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The delta function

The Dirac delta function, δ(x), is a handy tool for 
sampling theory.  

It has zero width, infinite height, and unit area. 

It is usually drawn as:

δ(x)
x
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Sifting and shifting

For sampling, the delta function has two important 
properties.

Sifting:

Shifting:
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The shah/comb function

A string of delta functions is the key to sampling.  The 
resulting function is called the shah or comb
function:

which looks like:

Amazingly, the Fourier transform of the shah 
function takes the same form:

where so = 1/T.
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Sampling

Now, we can talk about sampling.

The Fourier spectrum gets replicated by spatial 
sampling!

How do we recover the signal?

III(x)

x
T

x

x

III(s)

s
so

s

s

= =

19

Sampling and reconstruction
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Sampling and reconstruction in 2D
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Sampling theorem

This result is known as the Sampling Theorem and is 
due to Claude Shannon who first discovered it in 
1949:

A signal can be reconstructed from its samples 
without loss of information, if the original signal 
has no frequencies above ½ the sampling 
frequency.

For a given bandlimited function, the minimum rate 
at which it must be sampled is the Nyquist 
frequency. 
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Reconstruction filters

The sinc filter, while “ideal”, has two drawbacks:

It has large support (slow to compute)

It introduces ringing in practice

We can choose from many other filters…
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Reconstruction filters in 2D

We can also perform reconstruction in 2D…
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Aliasing

What if we go below the Nyquist frequency?
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Anti-aliasing

Anti-aliasing is the process of removing the 
frequencies before they alias.
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Anti-aliasing by prefiltering

We can fill the “magic” box with analytic pre-filtering 
of the signal:

Why may this not generally be possible?
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Filtered downsampling

Alternatively, we can sample the image at a higher 
rate, and then filter that signal:

We can now sample the signal at a lower rate.  The 
whole process is called filtered downsampling or 
supersampling and averaging down.
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