
1

Affine Transformations

Reading

• Foley et al., Chapter 5.6 and Chapter 6

Supplemental

• David F. Rogers and J. Alan Adams, Mathematical Elements
for Computer Graphics, Second edition

2D geometry Pipeline 3D Geometry Pipeline

2

Affine Geometry

• Points: location in 3D space

• Vectors: quantity with a direction and magnitude, but no fixed
position

• Scalar: a real number

P

v s = 5.3

Affine Spaces

Affine space consists of points and vectors related by a set of
axioms:

• Difference of two points is a vector:

• Head-to-tail rule for vector addition:

Q

P

P-Q

Q

P

P-Q
P-R

Q-R
R

Affine Operations

Legal affine operations:

… example of an “illegal” operation:

Useful combination of affine operations:

What is it?

vector vector vector

scalar vector vector

point point vector

point vector point

+ →
⋅ →
− →
+ →

point point nonsense+ →

0()P Pα α= + v

3

Affine Combination

Affine combination of two points:

where is defined to be the point

We can generalize affine combination to multiple points:

where

1 1 2 2Q Q Qα α= +

1 2 1α α+ =

1 1 2 1()Q Q Q Qα= + −

1 1 2 2 n nQ Q Q Qα α α= + + +L

1iα =∑

Affine Frame

A frame can be defined as a set of vectors and a point:

Where form a basis and is a point in space.

Any point P can be written as

And any vector as:

()1, , ,nv vL O

O1, , nv vL

1 1 n nP p p= + + +v vL O

1 1 n nu u= + +u v vL

Matrix representation of points and vectors
Coordinate axiom:

So every point in the frame can be written as

And every vector as

0 P

P P

⋅ =
⋅ =

0

[]

1 1 2 2

1

2

1 2

1

1

n n

n

n

P p p p

p

p

p

= + + + + ⋅

 
 
 

=  
 
 
  

v v v

v v v

L

L L

O

O

()1 2, , , ,n= v v vKF O

[]

1 1 2 2

1

2

1 2

0

0

n n

n

n

u u u

u

u

u

= + + + + ⋅

 
 
 

=  
 
 
  

u v v v

v v v

L

L L

O

O

Changing frames

Given a point P in frame Φ, what are the coordinates of P in
frame

Since each element of Φ can be written in coordinates relative to
Φ ´

()1 2, , , ,n
′ ′ ′ ′ ′= v v vKF O

[] []

1 1

2 2

1 2 1 2

1 1

n n

n n

p p

p p

P

p p

′   
   ′   

′ ′ ′ ′= =   
   ′   
      

v v v v v vL LL LO O

,1 1 ,

1,1 1 1,

i i i n n

n n n n

f f

f f+ +

′ ′= + +
′ ′ ′= + + +

v v v

v v

L

LO O

4

Changing frames cont’d

Written in a matrix form

[] []

1 1
1,1 ,1 1,1

2 2

1 2 1 2
1, , 1,

0 0 0 1
1 1

n n

n n
n n n n n

n n

p p
f f f

p p

f f f
p p

+

+

′   
    ′     
 ′ ′ ′ ′ ′ ′ ′ ′=   
    ′            

v v v v v v

L

M O M
L LL LO O

1 1 1
1,1 ,1 1,1

2 2 2

1, , 1,

0 0 0 1
1 1 1

n n

n n n n n
n n n

p p p
f f f

p p p

f f f
p p p

+

+

′     
      ′       
 = =     
      ′                  

F

L

M O M
L L L

Euclidean and Cartesian spaces

A Euclidean space is an affine space with an inner product:

A Cartesian space is a Euclidean space with a standard
orthonormal frame. In 3D: (i, j , k, Ο)

, Tu v u v u v= ⋅ =

1 if

0 otherwisei j

i j=
⋅ = 


e e

Useful properties and operations
in Cartesian spaces

Length:

Distance between points:

Angle between vectors:

Perpendicular (orthogonal):

Parallel:

Cross product (in 3D):

= ⋅v v v

P Q−

1cos−
 ⋅
 ⋅ 

u v
u v

0⋅ =u v

1
⋅ = ±
⋅

u v
u v

× =u v w

Affine Transformations

is an affine transformation if it preserves affine
combinations:

Where . The same applies to vectors.

Affine coordiantes are preserved:

Lines map to lines:

Paralelism is preserved:

Ratios are preserved:

() ()i i i iF Q F Qα α=∑ ∑
1iα =∑

() () ()i i i iF p F p F+ = +∑ ∑v vO O

0 0() () ()F P F P Fα α+ = +v v

0 0() () ()F Q F Q Fβ β+ = +v v

() ()1 2 1 2, , (), (), ()Ratio Q Q Q Ratio F Q F Q F Q=

:F A B→

5

2D Affine Transformations

P=[x,y,1]

P is a column vector

P is a row vector

1 0 0 1 1

P P

x a b c x

y d e f y

′ =
′     

     ′ =     
          

M

[] []
0

1 1 0

1

P P

a d

x y x y b e

c f

′ =

 
 ′ ′ =  
  

M

Identity

Doesn’t move points at all

1 0 0

0 1 0

0 0 1

 
 
 
  

Translation

1 0

0 1

1 0 0 1 1

x c x

y f y

x x c

y y f

′     
     ′ =     
          
′ = +
′ = +

Scaling

Changing the diagonal elements performs scaling

If a=f scaling is uniform

What if a,f<0

0 0

0 0

0 0 1

a

f

 
 
 
  

’

’

x ax

y fy

=
=

1 0 0

0 1 0

0 0 1

− 
 − 
  

6

Shearing

What about the off-diagonal elements?

The matrix

Gives

1 0 0

1 0

0 0 1

d

 
 
 
  

’

’

x x

y dx y

=
= +

Effect on unit square

• M can be determined just by knowing how corners [1,0,1] and
[0,1,1] are mapped

• A and f give x- and y-scaling

• B and d give x- and y-shearing

0 0 1 1 0 0

0 0 0 1 1 0

0 0 1 1 1 1 1 1 1 1 1

a b a a b b

d e d d e e

+     
     = +     
          

Rotation

• Rotation of points [1,0,1] and [0,1,1] by angle α around the
origin:

1 cos()

0 sin()

1 1

α
α

   
   →   
      

0 sin()

1 cos()

1 1

α
α

−   
   →   
      

The Matrices

sx
0
0

0
sy
0

0
0
1

Scale by sx in the x and sy in the y direction
(sx < 0 or sy < 0 is reflection):

cos θ
sin θ

0

-sin θ
cos θ

0

0
0
1

Rotate by angle θ (in radians):

1
0
0

a
1
0

0
0
1

Shear by amount a in the x direction:

1
b
0

0
1
0

0
0
1

Shear by amount b in the y direction:

1
0
0

0
1
0

tx
ty
1

Translate by the vector (tx, ty):

1
0
0

0
1
0

0
0
1

Identity (do nothing):

7

Transformation Composition

Applying transformations F to point P and transformation G to the
result

Combining two transformations

P P

P P

′ =
′′ ′=

F

G

()

()

P P

P

′′ =
=

G F

GF

Rotation around arbitrary point

Reflection around arbitrary axis Properties of Transforms

• Compact representation

• Fast implementation

• Easy to invert

• Easy to compose

8

3D Scaling

• Some of the 3D transformations look just like their 2D
counterparts. Scaling is such a case:

x’
y’
z’
1

sx
0
0
0

0
sy
0
0

0
0
sz
0

0
0
0
1

x
y
z
1

=

3D Translation

x’
y’
z’
1

1
0
0
0

0
1
0
0

0
0
1
0

tx
ty
tz
1

x
y
z
1

=

cos θ
sin θ

0
0

3D Rotation

1
0
0
0

0
0
0
1

Rotate about the x axis:
0

cos θ
sin θ

0

0
-sin θ
cos θ

0
cos θ

0
sin θ

0

0
0
0
1

Rotate about the y axis:
0
1
0
0

-sin θ
0

cos θ
0

0
0
1
0

0
0
0
1

Rotate about the z axis:
-sin θ
cos θ

0
0

How can we rotate about an arbitrary line?

3D Shear

• Shear in 3D is also more complicated. Here’s one example:

x’
y’
z’
1

1
0
0
0

a
1
0
0

0
0
1
0

0
0
0
1

x
y
z
1

=

