Affine Transformations

Reading
* Foley et al., Chapter 5.6 and Chapter 6
Supplemental

» David F. Rogersand J. Alan Adams, Mathematical Elements
for Computer Graphics, Second edition
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Affine Geometry

* Poaints location in 3D space

« Vectors quantity with adirection and magnitude, but no fixed
position

e Scalar: area number

Affine Spaces

Affine space cond gts of pointsand vectorsrelated by a set of
axioms:

 Difference of two pointsisa vector:

* Head-to-tail rule for vector addition:

op
P-
P-Q

Affine Operations

Legal affine operations:
vector +vector — vector
scalar - vector — vector
point — point — vector
point + vector — point

... example of an “illegal” operation:
point + point — nonsense
Useful combination of affine operations:
P(e)=R+av

Wheat isit?




Affine Combination

Affine combination of two points:
Q=0Q +,Q,
where o, +a,=1 isdefined to be the point
Q=Q+x(Q,-Q)
We can generalize affine combination to multiple points:
Q=0Q +a,Q,++,Q,
where

Yo =1

Affine Frame

A frame can be defined as a set of vectorsand a point:
(Vy++,V,,0)

Where v,,--,v, form abasisand 0 isa point in space.
Any point P can be written as
P=pv,+:-+pVv,+0O

And any vector as

U=UV, ++ UV,

Matrix representation of points and vectors

Coordinate axiom:  0-P=0
P=P
So every point inthe frame F =(v,,v,,...,v,,0) can be written as
P=pv,+p,V,+---+p,v,+1.0
P

p2
=[v1 V, -V, o]

And every vector as
U=V, +UV,+---+Uv,+0-0

[

Changing frames

Given apoint P inframe @, what are the coordinatesof P in
frame F "= (V},V},...,v;,,0”)

P Py
P, 24
p=[\,1 V, eV, o] =[v; V, e V) o']
P, o
1 1

Since each element of @ can be written in coordinates relative to
g

, ,
V= Vit £ V)
O=f Vi+t+f vV +O

min




Changing frames cont’d

Written in amatrix form

,

P, - P,
p; f:1,1 fnl fn;l.’l D,
MV ve oo vy O =y Ve e v O N E

’ 1n nn n+ln
Py o0 0 1™
|1 L 1

P p] [m

, fo o fo

p| | | e p:

= U =

’ fln fnn fn+1n

P, S P,

1] 1] |1

Euclidean and Cartesian spaces

A Euclidean space is an affine space with an inner product:

(uvy=u-v=u'v

A Cartesian space is a Euclidean space with a standard
orthonormal frame. In3D: (i, j , k, O)

et ifis]
" T7]0 otherwise

Useful properties and operations
in Cartesian spaces
Length: |v|=vv-v

Digtance between points |P-Q|

Angle between vectors: 005’1[%]

Perpendicular (orthogonal): u-v=0

Paralld: =+1

u-v
Jul- v

Crossproduct (in 3D): uxv=w

Affine Transformations

F:A— B isan affine transformation if it preserves affine
combinations:
F(XaQ)=2aFQ)
Where Y o, =1. The same appliesto vectors.
Affine coordiantesare preserved:  F(O+Y,pv,)=F(©0)+ Y, pF(v)
Lines map to lines: F(R+av)=F(R)+aF(v)

Paralelismispreserved:  F(Q+Av)=F(Q)+BF(v)

Ratiosare preserved: Ratio(Q,Q,Q,)= Ratio(F(Q),F(Q).F(Q,))




2D Affine Transformations

P=[x,y,1]
P isa column vector
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Doean't move pointsat all
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P'=PM
ado
[X v 1=[x y 1]b e 0
c f 1
Trangdation Scaling
Changing the diagonal elements performs scaling
a 0o X'= ax
X1 [1 0 c][x o o ,:f
yl=[0 1 f|y 001 y=n
1 00 11 N .
, If a=f scaling isuniform
X =x+cC
y=y+t What if af<0
-1 0 0
0 -1 0

0 0 1




Shearing

What about the off-diagonal elements?

The matrix
100
d 10
001
Gives
X'=X
y'=dx+y

Effect on unit square

a b 0|[0 1 1 0] [0 a atb b
d e 0[[0 01 1|=|0 d d+e e
00 1fj1 111 11 1 1

* M can be determined just by knowing how corners[1,0,1] and
[0,1,1] are mapped

e Aandf givex- and y-scaling

* B andd give x- and y-shearing

Rotation

* Rotation of points[1,0,1] and [0,1,1] by angle o around the
origin:

1 cos(@)
0[—|sin(e)
1 1
0 —sin(@)
1|—| cos(xr)
1 1

The Matrices
. . 1 0 0
Identity (do nothing): { 0 1 0 }
0 0 1
Scale by s, in the xand s, in the y direction s 0 0
(sx<0ors,<0is reflection): 0 g 0
0 1
X . . cosd -snf 0O
Rotate by angle ¢ (in radians): { N6 coséd O }
0 0 1
Shear by amount a in the x direction: { [1) ¢ g }
0 0 1
. I 1 0 0
Shear by amount b in the y direction: { b 1 0 }
0 0 1
1 0 t
Translate by the vector (t,, t,): { 0 1 tiv }
0 o




Transformation Composition

Applying transformations F to point P and transformation G to the
result
P'=FP
P’=GP’

Combining two transformations

P”=G(FP)
=(GF)P

Rotation around arbitrary point

Reflection around arbitrary axis

Properties of Transforms

Compact representation
Fast implementation
Easy to invert

Easy to compose




3D Scaling 3D Trandation
* Some of the 3D transformations|ook just like their 2D )
counterparts. Scaling issuch a case: [;J B {[1) [1’ g w [;}
X 0 0 0 X | = Y Z
MBS EIEN AR S
1 00 0 1 1
3D Rotation 3D Shear

» Shear in 3D isalso more complicated. Here' s one example:

1 0 0 0
Rotate about the x axis: {0 cosé -sing 0} © 1 a 0 0 M
0 sn® cosé O y| 1o 1 0 o0 v
° ° 0 1 z 0O 0 1 0 z
cos®# 0 -sn@ O 1 0 0 1 1
Rotate about the y axis: 0o 1 0 o0
sng O cosé O
0 0 0 1
cosf -sng 0 0
Rotate about the z axis: sing cosé 0 O
0 0 10
0 0 0 1

How can we rotate about an arbitrary line?




