Inverse Kinematics

Goal

Several different approaches to IK, varying in capability, complexity, and robustness

We want to be able to choose the right kind for any particular motion editing task/tool

Animating Characters

Many editing techniques rely on either:

- Interactive posing
- Putting constraints on bodyparts' positions and orientations (includes mapping sensor positions to body motion)
- Optimizing over poses or sequences of poses

All three tasks require inverse kinematics

IK Problem Definition

- 1) Create a handle on body
- position or orientation
- 2) Pull on the handle

3) IK figures out how joint angles should change

• how do we find a good one?

Two main approaches:

- Geometric algorithms
- Optimization/Differential based algorithms

Cons:

- proprietary; no established methodology
- hard to generalize to multiple, interacting constraints
- cannot be integrated into dynamics systems

Optimization Algorithms

Main Idea: use a numerical metric to specify which solutions are good

metric - a function of state q (and/or state velocity) that measures a quantity we'd like to minimize

An Approach to Optimization

If G(q) is quadratic, can use Sequential Quadratic Programming (SQP)

- original problem highly non-linear, thus difficult
- SQP breaks it into sequence of quadratic subproblems
- iteratively improve an initial guess at solution
- How?

Example

Some commonly used metrics:

- joint stiffnesses
- minimal power consumption
- minimal deviation from "rest" pose

Problem statement:

Minimize metric G(q) subject to satisfying C(q) =0

Search and Step

Use constraints and metric to find direction Δq that moves joints closer to constraints

Then $q_{new} = q + a \Delta q$

where

Min C(q + $a \Delta q$) a

Iterate whole process until C(q) is minimized

Breaking it Down

Performing the integration $q_{new} = q + a \Delta q$ is easy (Brent's alg. to find a)

Finding a good Δq is much trickier

Enter Derivatives.

What Derivatives Give Us

We want:

 a direction in which to move joints so that constraint handles move towards goals

Constraint Derivatives tell us:

in which direction constraint handles move if joints move

Constraint derivatives

Jacobian Matrix

Can compute Jacobian for each constraint / handle

Value of Jacobian depends on current state

Jacobian linearly relates joint angle velocity to constraint velocity

Constrained Optimization

- Many formulations (*e.g.* Lagrangian, Lagrange Multipliers)
- All involve solving a linear system comprised of Jacobians, the quadratic metric, and other quantities

 $\begin{array}{c} \text{minimize} \quad G(\mathbf{q}) \\ \mathbf{q} \\ \text{subject to} \quad \mathbf{C}(\mathbf{q}) \end{array}$

Result: constraints satisfied (if possible), metric minimized subject to constraints

Jacobian Matrix

Have efficient techniques for computing Jacobians

But how do we use it to compute Δq ?

- Constrained optimization
- Unconstrained optimization

Constrained Performance

Pros:

- Enforces constraints exactly
- Has a good "feel" in interactive dragging
- Quadratic convergence

Cons:

- A Dark Art to master
- near-singular configurations cause instability

Unconstrained Optimization

Main Idea: treat each constraint as a separate metric, then just minimize combined sum of all individual metrics, plus the original

- Many names: penalty method, soft constraints, Jacobian Transpose
- physical analogy: placing damped springs on all constraints
 - each spring pulls on constraint with force proportional to violation $G(q) = G(q) + C(q)^2$

Unconstrained Performance

Pros:

- Simple, no linear system to solve, each iteration is fast
- near-singular configurations less of problem

Cons:

- Constraints fight against each other and original metric
- sloppy interactive dragging (can't maintain constraints)
- linear convergence

Why Does Convergence Matter?

Trying to drive C(q) to zero:

# Iterations	1	2	3	4	5
quadratic C(q)	.25	.0625	.015	.004	.0009
linear C(q)	.5	.25	.125	.0625	.0313
linear/quadrati	<mark>c</mark> 2	4	8	16	32

Recap and Conclusions

Inverse Kinematics

- Geometric algorithms
 - fast, predictable for special purpose needs
 - don't generalize to multiple constraints or physics
- Optimization-based algorithms
 - Constrained vs. unconstrained methods

Recap and Conclusions

Constrained optimization

- achieves true constrained minimum of metric
- solid feel and fast convergence
- involves arcane math
- near-singular configurations must be tamed

Recap and Conclusions

Unconstrained optimization

- near-singular configurations manageable
- spongy feel
- poor convergence
- easy to get penalty method up and running