Hidden Surfaces

Reading

* Foley et al, Chapter 15

The Quest for 3D

Construct a 3D hierarchical geometric model
Define avirtual camera
Map pointsin 3D space to pointsin an image

produce awireframe drawing in 2D from a 3D object

Of course, there’ s more work to be done...

I ntroduction

Not every part of every 3D object isvishble to a particular
viewer. We need an algorithm to determine what parts of
each object should get drawn.
Known as“ hidden surface elimination” or “visble surface
determination”.
Hidden surface elimination algorithms can be categorized
in three major ways:

— Object space vs. image space

— Object order vs. image order

— Sort first vs. sort last

— Still avery active research area
Where would we use a hidden surface algorithm?

Object Space Algorithms
» Operate on geometric primitives
— For each object in the scene, compute the part of it which isn’'t obscured
by any other object, then draw.
— Must perform tests at high precision
— Resulting information is resolution-independent

* Complexity
— Must compare every pair of objects, so O(n?) for n objects
— Optimizations can reduce this cost, but...
— Best for scenes with few polygons or resolution-independent output

* Implementation
— Difficult to implement!
— Must carefully control numerical error

Image Space Algorithms

» Operate on pixels
— For each pixel in the scene, find the object closest to the COP which
intersects the projector through that pixel, then draw.
— Perform tests at device resolution, result works only for that resolution

« Complexity
— Must do something for every pixel in the scene, so at least O(R).
— Easiest solution is so test projector against every object, giving O(nR).
— Morereasonable version only does work for pixels belonging to objects:
O(nr), r is number of pixels per object
— Often, with more objects, each is smaller, so we estimate nr = O(R) in
practice

* Implementation
— Usualy very simple!

Object Order vs. Image Order

* Object order

— Consider each object only once - draw its pixels and move on to
the next object

— Might draw the same pixel multiple times

* Image order

— Consider each pixel only once - draw part of an object and move
on to the next pixel

— Might compute relationships between objects multiple times

Sort Firg vs. Sort Last

* Sort first

— Find some depth-based ordering of the objects relative to the
camera, then draw from back to front

— Build an ordered data structure to avoid duplicating work

* Sort last
— Sort implicitly as more information becomes available

Important Algorithms
* Ray casting
* Z-buffer
* Binary space partitioning
» Back faceculling

Ray Casting

Partition the projection plane into pixelsto match screen

resolution

For each pixel p;, congtruct ray from COP through PP a

that pixel and into scene

Intersect the ray with every object in the scene, colour the
pixel according to the object with the closest intersection

10

Aside: Definitions
* An agorithm exhibits coherenceif it uses knowledge
about the continuity of the objects on which it operates

* Anonline dgorithmis one that doesn't need dl the datato
be present when it starts running
— Example: insertion sort

Ray Cagting Analysis

Categorization:

Easy to implement?

Hardware implementation?
Coherence?

Memory intensive?
Pre-processing required?
Online?

Handles transparency?

Handles refraction?
Polygon-based?

Extrawork for moving objects?
Extrawork for moving viewer?
Efficient shading?

Handles cycles and self-intersections?

12

Z-buffer

» |dea: along with a pixel’s red, green and blue values, maintain some
notion of its depth

— An additional channel in memory, like alpha
— Cadled the depth buffer or Z-buffer

void draw_mode_setup(void) {
glEnable (GL_DEPTH_TEST) ;

}
When the time comes to draw a pixel, compare its depth with the depth
of what' salready in the framebuffer. Replace only if it's closer
* Very widely used
» History

— Originally described as “brute-force image space al gorithm”

— Written off asimpractical agorithm for huge memories
— Today, done easily in hardware

Z-buffer Implementation

for each pixel p,

z-buffer(p;]

= FAR
Fb[p; |

= BACKGROUND_COLOUR

}

for each polygon P

for each pixel p; in the projection of P
{

Compute depth z and shade s of P at p,
if z < zZ-buffer[p,]

{

z-buffer(p; | = z

Folp, | = s

14

Z-buffer Tricks

* The shade of atriangle can be computed incrementally
from the shades of its vertices

» Can do the same with depth

(R,G,,B,2)
v

(RyG3By2)

\
AY

(R,G;B,2)

Depth Preserving
Conversion to Parallel Projection

Parallelpiped

 View Volume

_ Frustum

/‘/\Vmw Volume

Parallel Projection
(@

Point

Perspective Projection
(b)

16

Z valueinterpolation

z=2-(z-z) 2%
Yi— Y2
z,=2-(3-2) 2%
Yi—Ys

—X
zp=zh—(zh—za)x‘” .
X =%

Z-buffer Analysis

Categorization:
« Easy toimplement?

* Hardware implementation?

» Coherence?

* Memory intensive?

* Pre-processing required?

e Online?

» Handles transparency?

» Handles refraction?

* Polygon-based?

« Extrawork for moving objects?

« Extrawork for moving viewer?

« Efficient shading?

» Handles cycles and self-intersections?

18

Binary Space Partitioning

* Goal: build atreethat captures some relative depth
information between objects. Use it to draw objectsin the
right order.

— Tree doesn’t depend on camera position, so we can change
viewpoint and redraw quickly

— Called the binary space partitioning tree, or
BSP tree

» Key observation: The polygonsin the scene are painted in
the correct order if for each polygon P,

— Polygons on the far side of P are painted first

— Pispainted next

— Polygons in front of P are painted last

Buildinga BSP Tree (in 2D)

Alternate BSP Tree

BSP Tree Construction

BSPtree makeBSP(L: list of polygons)
{
if L is empty

{
}

return the empty tree

Choose a polygon P from L to serve as root

split all polygons in L according to P

return new TreeNode (
P,
makeBSP(polygons on negative side of P),
makeBSP (polygons on positive side of P))

« Splitting polygonsisexpensve! It helpsto choose P

wisely at each step.
— Example: choose five candidates, keep the one that splits the
fewest polygons
21 22
BST Tree Display BSP Tree Analysis
Categorization:
ShowBSP (v: Viewer, T: BSPtree) * Easy toimplement?
{ e Hardware implementation?
if T is empty then return . Coher o
7 o woor of T oo ot » * Memory intensive?
if viewer is in front o
* Pre-processing required?
howBSP (back bt re £ T) . .
i ©lt subkree o Online?
(showBSP(front subtree of T) » Handles transparency?
} el .
o showBSP(front subtree of T) * Handlesrefraction?
diawBPP back bt £ T) : POIyg)n-b 7
) SRouBSE(back subtyee o » Extrawork for moving objects?
} « Extrawork for moving viewer?
« Efficient shading?
» Handles cycles and self-intersections?
23 24

Back Face Culling Summary

Can be used in conjunction with polygon-based algorithms » Classfication of hidden surface algorithms
Often, we don’t want to draw polygons that face away * Understanding of Z-buffer

fromthe viewer. So test for thisand eliminate (cull) back- « Familiarity with BSP trees and back face culling
facing polygons before drawing

How can we test for this?

