
Distributed	Transactions

Arvind	Krishnamurthy	

University	of	Washington

Spanner

• Key	features:	

• general-purpose	transactions	across	sharded	datasets	

• high	performance	

• “TrueTime”	API	and	“external	consistency”	

• multi-version	data	store

Example:	Social	Network

• Consider	a	simple	schema:	

• User	posts	

• Friend	lists	

• Looks	like	a	database,	but:	
• shard	data	across	multiple	continents	

• shard	data	across	1000s	of	machines	

• replicated	data	within	a	continent/country	

• Lock-free	read	only	transactions

Read	Transactions

• Example:	Generate	a	page	of	friends’	recent	posts	

• Consistent	view	of	friend	list	and	their	posts	

• Want	to	support:	

• remove	friend	X	

• post	something	about	friend	X

Spanner	Transaction

• Two-phase	commit	layered	on	top	of	Paxos	

• Paxos	provides	reliability	and	replication	

• 2PC	allows	coordination	of	different	groups	responsible	
for	different	datasets	

• Layering	provides	non-blocking	2PC	

• Uses	2-phase	locking	to	deal	with	concurrency

Example

• Consider	transfer	between	two	bank	accounts

Read-only	transactions

• User	X	sequentially	performs:	

• remove	friend	Y	

• post	something	about	friend	Y	

• User	Y	atomically	reads	X’s	friends	list	and	X’s	posts	

• Display	X’s	posts	only	if	X’s	friends	list	includes	Y	

• Let	us	consider	optimizing	this	with	synchronized	
clocks

Synchronized	Clocks

• Use	multi-version	data	

• All	updates	tagged	with	the	time	of	update	

• Reads	performed	at	a	particular	point	in	time	

• Called	snapshot	reads	

• Applications	might	be	willing	to	read	snapshots	at	some	
recent	time	in	the	past	

• How	can	we	make	this	work	with	partially	
synchronized	clocks?

TrueTime

API	that	exposes	real	Wme,	with	uncertainty	

{earliest: e, latest: l} = TT.now()

“Real	Wme”	is	between	earliest and latest

Time	is	an	illusion!	

If	I	call	TT.now()	on	two	nodes	simultaneously,	intervals	
guaranteed	to	overlap!	

If	intervals	don’t	overlap,	the	later	one	happened	later!

Using	TrueTime

• Consider	a	simple	write	operation	on	a	single	node	

• Suppose	you	want	to	associate	a	“write	timestamp”	
for	the	operation	

• Need	to	ensure	that	the	write	timestamp	falls	during	the	
physical	time	interval	of	the	client	perceived	delay	

• What	timestamp	should	I	attribute	to	the	
operation?	

• What	should	the	server	do	to	guarantee	linearizability?

Using	TrueTime

• When	server	receives	write	operation	op:	

• set	op.tstamp	=	TT.now().latest	

• Wait	till	TT.now().earliest	>	op.tstamp	

• Perform	write:	record	a	new	version	with	op.tstamp	

• Send	response	to	the	client	

• When	server	receives	a	“read	snapshot	at	t”	
operation	

• Ensure	that	t	<	TT.earliest()	

• Read	versions	of	objects	associated	with	time	t

Generalizing	to	Transactions

• Multiple	groups	involved	in	each	transaction	(2PC)	

• Multiple	nodes	involved	in	each	group	(Paxos)	

• Some	of	the	operations	can	be	performed	on	the	
leader	

• Ensure	that	timestamps	are	monotonic	across	leader	
changes	

• Ensure	that	locks	obtained	only	at	leaders	are	sufficient

Many	Protocol	Details

• Sections	4.1	&	4.2:	

• Each	replica	determines	whether	its	state	is	sufficiently	up-to-
date	to	satisfy	a	read	

• replica	can	satisfy	a	read	at	t	if	t	<=	tsafe	

• tsafe	=	min(tsafePaxos,	tsafeTM)	

• tsafePaxos	is	timestamp	of	last	“Paxos	write”	

• tsafeTM	is	timestamp	of	last	prepare	(also	Paxos	write)		

• Read-only	transaction	first	identifies	a	timestamp	and	then	
performs	a	snapshot	read	at	the	timestamp	

• Timestamp	can	be	TT.now().latest	

• Or	smaller	to	reduce	the	commit	wait	time

Distributed	transactions	with	strong	
consistency	are	useful

high latency
low throughput

Transaction Protocol (2PC)

Replication
Protocol
(Paxos)

Replication
Protocol
(Paxos)

Replication
Protocol
(Paxos)

TAPIR	Insights

Strong replication
protocols waste work.

Co-design a
linearizable transaction protocol

with unordered replication.

Result:
cheaper transactions,  

same strong guarantees

Existing	transaction	systems	combine	
protocols	with	strong	guarantees

Guarantees Fault-tolerance Scalability Linearizable
Ordering

Distributed
Transaction

Protocol

Replication
Protocol

Storage PartitionStorage PartitionStorage Partition

Strong	replication	works	with	
existing	transaction	protocols

App
Server

App
Server

Storage PartitionStorage PartitionStorage Partition

Paxos Paxos Paxos

Any Transaction Protocol works!

Storage PartitionStorage PartitionStorage Partition

…	but	is	expensive.

App
Server

App
Server

txn

txn
txn

txntxn

txn txn
txn

txntxn

txn txn
txn

txn
txn

2 RTT

Single Leader
Bottleneck

Can	we	reduce	the	cost?

Guarantees Fault-tolerance Scalability Linearizable
Ordering

Distributed
Transaction

Protocol

Replication
Protocol

Can we still
ensure this?

What do we need
here instead?

Will it be
cheaper?

Inconsistent	Replication

New replication protocol providing
unordered operations where replicas
agree on operation results.

IR provides a fault-tolerant, unordered operation set 
with the following guarantees:

Fault-tolerance for operations and their results with
up to f failures out of 2f+1 replicas.

Agreement from at least a majority of the replicas
for any operation result.

Overlap with every previously added operation on at
least one replica out of every quorum.

IR	Guarantees

IR	provides	a	way	to	avoid	conflicts	
without	strong	operation	ordering
• IR ensures a majority

agree to every operation
result.

• Quorum intersection
ensures every conflict is
detectable.

• IR ensures conflict
decisions from
application protocol are
fault-tolerant.

App
Server

App
Server

txn

Replica Replica

Replica

txn

commitcommit

abortcommit

txn txn

App
Server

App
Server

opopop

The	IR	Protocol	(simplified)

Replica Replica

Replica

opop

result

result resultresult2

result1

1.Execute operation at
replicas.

2. If results from a
quorum match, return
result.

3. If not, application
protocol picks a result.

4. Update result at
replicas.

result1

IR	Pros	&	Cons

Fast: 1 round-trip fast path, 2 round-trip slow path

Efficient: No cross-replica coordination or leader
needed to complete operations

Less general: Does not ensure replicas appear
as a single machine

Needs co-design: Requires careful co-design for
both correctness and performance

Storage PartitionStorage PartitionStorage Partition

Strong	replication	works	with	
existing	transaction	protocols

App
Server

App
Server

Storage PartitionStorage PartitionStorage Partition

Paxos Paxos Paxos

Any Transaction Protocol works!

TAPIR

New distributed transaction protocol that
provides linearizable transactions using IR
(Inconsistent Replication).

Inconsistent Replication is unordered/
unsequenced persistence of operations
on replica nodes.

Storage PartitionStorage PartitionStorage Partition

TAPIR	coordinators	are	App	Servers

App
Server

App
Server

txntxntxn txntxntxntxntxntxn txntxntxn

No Leader
Bottleneck

1 RTT

Two	key	ideas

• TAPIR	uses	a	super-quorum	of	nodes	inside	each	
shard	to	ensure	recovery	from	failed	coordinators	

• TAPIR	uses	a	form	of	OCC	that	checks	for	the	same	
serialization	order	across	different	shards	and	
nodes

Fast-Path/Slow-Path

• App	Server	issues	“Prepares”	to	all	nodes	in	all	shards	
• 1	RTT	case:	If	all	shards	respond	with	Prepare-OK	“super	
quorums”,	then	

• App	Server	declares	the	transaction	to	be	successful	

• Inform	shards	of	the	transaction	commit	in	the	background	

• 2	RTT	case:	If	all	shards	respond	with	just	a	Prepare-OK	
quorum,	then	

• App	Server	first	persists	the	transaction	result	in	a	coordinator	
shard	

• Then	returns	success	to	the	application,	informs	shard	of	
transaction	commit

“Super	Quorum”	of	Nodes

• App	Server	initiated	operations	require	a	“super-
quorum”	

• Super	quorum	size	is⌈3f/2⌉+	1	
• Recovery	protocol	continues	only	those	transactions	that	
have	a	majority	of	votes	amongst	live	nodes	

• Recovery	differentiates	the	following	outcomes	

• Transaction	committed	in	a	fast	path	

• Transaction	not	committed	in	a	fast	path,	but	
serializable	

• Transaction	that	cannot	be	serialized

“Super	Quorum”	of	Nodes

• Let	us	say	T1,	T2	are	two	conflicting	transactions	

• T1	receives	⌈3f/2⌉+	1	votes,	T2	receives	⌊f/2⌋	votes	
• Even	after	f	failures,	T1	has	a	majority	of	votes	

• Recovery	protocol	will	never	attempt	to	commit	T2	

• T1	receives	⌈f/2⌉+	1	votes,	T2	receives	none,	f	nodes	fail	
• Recovery	protocol	will	attempt	to	commit	T1	

• Invariant:	any	transaction	committed	in	the	fast	path	
will	be	recovered	

• What	are	the	downsides	of	using	a	super	quorum?

Storage Partition Storage Partition

IR	introduces	challenges

Storage Partition

txn
txntxn
txn

txn

txn txn
txn

txn
txn

txntxn

Reordered

transactions?App
Server

App
Server

Incomplete
history?

Subset of

transactions?

Storage Partition

TAPIR	uses	optimistic	concurrency	
control	(OCC)	to	detect	conflicts	on	IR

• OCC checks one
transaction at a time.

• IR ensures every pair of
transactions is checked
on at least one replica.

• OCC+IR ensures that
every conflict is detected.

App
server

App
server

txntxn txntxn

txn txn

Why	is	constrained	OCC	needed?

• Consider	three	transactions	starting	with	X=Y=Z=0	

T1:		Read	X	->	0;	Y	=	1	

T2:		Read	Y	->	0;	Z	=	1	

T3:		Read	Z	->	0;	X	=	1	

• Shard-wise	traditional	OCC	checks:	
X’s	shard:	OK	(“T1	before	T3”)	

Y’s	shard:	OK	(“T2	before	T1”)	

Z’s	shard:	OK	(“T3	before	T2”)	

• Additional	coordination	required	to	see	whether	shard-
wise	OKs	can	yield	consistent	ordering	of	transactions

Storage Partition

TAPIR	uses	loosely	synchronized	
clocks	to	efficiently	order	transactions

• Clients pick transaction
timestamp using local clock.

• Replicas validate transaction
at timestamp, regardless of
when they receive the
transaction.

• Clock synchronization for
performance, not
correctness.

• Multiple outcomes: Prepare-
OK, Abort, Abstain, Retry

App
Server

App
Server

148txn 148txn 148txn 142txn 142txn 142txn

transaction
timestamps

OCC	Algorithm

• Consider	a	distributed,	but	non-replicated	setup	
• App	Server	requests	a	transaction	to	be	serialized	
at	time	“t”	

• Each	server	(shard)	maintains:	

• Versioned	memory	for	each	key-value	

• A	list	of	accepted	transactions	and	a	list	of	prepared	
transactions	

• What	should	be	the	local	OCC	check?

OCC	Check

• If	txn	has	read	a	key	and	its	value	has	been	
overwritten	before	the	timestamp,	then	Abort

OCC	Check

• If	a	prepared	transaction	is	going	to	overwrite	
before	the	timestamp,	then	Abstain

OCC	Check

• If	the	key	that	txn	attempt	to	write	has	been	read	by	
a	later	transaction	(either	prepared	or	committed)		

TAPIR	uses	multi-versioning	to	
reconcile	inconsistent	replicas

• IR periodically synchronizes
inconsistent replicas.

• TAPIR inserts versions using
the transaction timestamp.

• OCC prevents inconsistent
replicas from violating
transaction ordering.

App
Server

App
Server

Storage Partition

txn
txn

txntxntxn txn

Benefits	of	IR/TAPIR	co-design

Fast: Commit transactions in 1 round-trip

Strong: Linearizable read/write transactions

Easy to use: No change in storage interface

TAPIR	Measurements

How does TAPIR improve throughput & latency?

How does IR affect TAPIR’s abort rates?

How does TAPIR/IR compare to weak consistency (e.g.,
Redis transactions)?

Experimental	Setup

Implementation: Transactional key-value store

Workloads: Retwis Twitter clone & YCSB-t.

Testbed: Google Compute Engine VMs with default
clock synchronization.

Does	TAPIR	&	IR	improve	performance	
compared	to	conventional	protocols?

La
te

nc
y

(m
illi

se
co

nd
s)

0

4

8

12

Throughput (Retwis transactions/second)
0 5000 10000 15000 20000

TAPIR
OCC
Locking

Lower
Latency

3x Higher Throughput

Ab
or

t R
at

e

0.0001

0.0010

0.0100

0.1000

Contention (Zipf Co-efficient)
0.5 0.6 0.8 0.9 1.0

OCC
TAPIR

Does	IR	hurt	TAPIR’s	abort	rate?

10x Lower
Abort Rate

1.5x Lower
Abort Rate

Can	TAPIR	&	IR	compete	with	weak	
consistency	storage	systems?

Pe
ak

 th
ro

ug
hp

ut
 (t

xn
s/

se
co

nd
)

0

4000

8000

12000

16000

TAPIR MongoDB Cassandra Redis

Strong
txn

Limited txns
weak consistency

.8x-2x difference
in throughput
Same or better

latency!

High	Contention

While it is difficult for most protocols to handle
high contention, TAPIR’s performance is likely
to degrade less gracefully than a locking-
based protocol.

Summary

• Existing transactional storage systems waste work
using strong replication.

• Co-design TAPIR & IR to provide linearizable
transactions using an unordered replication.

• TAPIR & IR improves commit latency by 2x and
throughput by 3x from conventional protocols.

