
Distributed	Transactions

Arvind	Krishnamurthy	

University	of	Washington

Today’s	Topics

• What	is	correctness	or	different	forms	of	
consistency?	

• Distributed	transactions	
• Transaction	chains

Consistency	and	Performance

• Weaker	consistency	often	means	better	
performance	

• But	harder	for	programmers	to	reason	about	
system	behavior

Sequential	Consistency

• “The	result	of	any	execution	is	the	same	as	if	the	operations	
of	all	the	processes	were	executed	in	some	sequential	order	
and	the	operations	of	each	individual	process	appear	in	this	
sequence	in	the	order	specified	by	its	program”	(Lamport,	
1979)	

• Coherence	is	the	correctness	criteria	when	restricted	to	a	
single	memory	location

Sequential	Consistency

• Is	the	following	execution	sequentially	consistent?

Sequential	Consistency

• Is	the	following	execution	sequentially	consistent?

What	could	cause	this	behavior?

• Multiple	caches	&	non-serialized	updates	

• Non-blocking	operations	
• Compiler	rewrites

Linearizability

• “The	result	of	any	execution	is	the	same	as	if	the	operations	
of	all	the	processes	were	executed	in	some	sequential	order	
and	the	operations	of	each	individual	process	appear	in	this	
sequence	in	the	order	specified	by	its	program”	(Lamport,	
1979)	

• In	addition,	if	ts(A)	<	ts(B),	then	operation	A	should	precede	
B	in	this	sequence	(Herlihy	&	Wing,	1991)

Causal	Consistency

• Writes	that	are	potentially	causally	related	must	be	seen	by	
all	processes	in	the	same	order.	Concurrent	writes	may	be	
seen	in	a	different	order	on	different	machines.	(Hutto	and	
Ahamad,	1990)

Causal	Consistency

• Writes	that	are	potentially	causally	related	must	be	seen	by	
all	processes	in	the	same	order.	Concurrent	writes	may	be	
seen	in	a	different	order	on	different	machines.	(Hutto	and	
Ahamad,	1990)

Transactions

• Operations	sometimes	need	to	atomically	update	multiple	data	
items	

• Transactions	help	cope	with	crashes	and	concurrency	

• Example:	calendar	system,	each	user	has	a	calendar	

• Sched(u1,	u2,	t):	

		begin_transaction()	

		ok1	=	reserve(u1,	t)	

		ok2	=	reserve(u2,	t)	

		if	ok1	and	ok2:	

								commit_transaction()	

		else	abort_transaction()

Formalizing	Correctness	(Serializability)

• Atomic:	state	shows	either	all	the	effects	of	a	
transaction	or	none	of	them	

• Consistent:	transaction	moves	only	between	states	
where	integrity	holds	

• Isolated:	effects	of	transactions	is	the	same	as	
transactions	running	one	after	another	

• Durable:	once	a	transaction	has	committed,	its	
effects	remain	in	the	database

Serializability

• Conflicting	operations:	

• two	updates	to	the	same	location	

• an	update	and	an	access	to	the	same	location	

• Serializability	check:	

• Order	conflicting	operations	from	different	
transactions	

• All	ordering	constraints	between	two	transactions	
should	go	in	the	same	direction		

• i.e.,	T1’s	operations	happened	before	T2’s	
operations	or	the	other	way	around

Distributed	Transactions

• Data	distributed	across	multiple	nodes	

• How	to	provide	serializable	transactions	in	a	
distributed	setting?

Idea	#1

• tentative	changes,	later	commit	or	undo	(abort)	

reserve_handler(u,	t):	
		if	u[t]	is	free:	
				temp_u[t]	=	taken				//	A	TEMPORARY	VERSION	
				return	true	
		else:	
				return	false	

commit_handler():	
		copy	temp_u[t]	to	real	u[t]	
abort_handler():	
		discard	temp_u[t]

Idea	#2

• Single	entity	decides	whether	to	commit	to	ensure	
agreement	

• let's	call	it	the	Transaction	Coordinator	(TC)	
• Client	sends	RPCs	to	nodes	A,	B	
• Client's	commit_transaction()	sends	"go"	to	TC	

• TC/A/B	execute	distributed	commit	protocol	

• TC	reports	"commit"	or	"abort"	to	client

III. if (all votes YES) then

 decide := COMMIT

send COMMIT to all

else

 decide := ABORT

send ABORT to all who voted YES

halt

II. send vote to Coordinator

 if vote = NO then

 decide := ABORT

halt

2-Phase	Commit

picCoordinator Participant

I. sends VOTE-REQ to all participants

IV. if received COMMIT then

 decide := COMMIT

else

 decide := ABORT

halt

Dealing	with	failures

• Failures	result	in	timeouts	

• What	should	the	coordinator	do	when	it	times-out	
on	a	participant?	

• What	should	the	participant	do	when	it	times-out	
on	the	coordinator?	

• For	the	vote	request?	
• For	the	decision?	

• What	state	should	the	coordinator/participant	
maintain	in	stable	storage?

Transaction	Chains

• Lynx	system	for	geo-distributed	data	

• Low	latency	without	needing	to	contact	all	
shards	

• Serializable	semantics	if	transactions	have	a	
certain	structure	

• Takes	advantage	of	the	fact	that:	
• Most	transaction	systems	have	a	fixed	and	
known	set	of	transactions

Why	transaction	chains?

Bidder Item Price Seller Item Highest	bid

Bids Items

Alice Book $100

Bob Book $20

Alice iPhone $20

Bob

Datacenter-1 Datacenter-2

Alice

Bob Camera $100

Auction	service

Why	transaction	chains?

Alice’s	Bids

Alice Book $100

Bob

Datacenter-1 Datacenter-2

Alice

Bob Camera $100

Bob’s	Items

1.	Insert	bid	to	Alice’s	Bids		

2.	Update	highest	bid	on	Bob’s	Items

Operation:	Alice	bids	on	Bob’s	camera

1.	Insert	bid	to	Alice’s	Bids		

Why	transaction	chains?	

Alice’s	Bids

Alice Book $100

Bob

Datacenter-1 Datacenter-2

Alice

Bob Camera $100

Bob’s	Items

2.	Update	highest	bid	on	Bob’s	Items

Operation:	Alice	bids	on	Bob’s	camera

1.	Insert	bid	to	Alice’s	Bids		

Low	latency	with	first-hop	return

Alice’s	Bids

Alice Book $100

Bob

Datacenter-1 Datacenter-2

Alice

Bob Camera $100

Bob’s	Items

				

bid	on	Bob’s	camera

Alice Camera $500

$500

Problem:	what	if	chains	fail?

1. What	if	servers	fail	after	executing	first-hop?	

2. What	if	a	chain	is	aborted	in	the	middle?

Solution:	provide	all-or-nothing	atomicity

1. Chains	are	durably	logged	at	first-hop	
– Logs	are	replicated	to	another	closest	data	center	
– Chains	are	re-executed	upon	recovery	

2. Chains	allow	user-aborts	only	at	first	hop	

• First	hop	commits	!all	hops	eventually	commit

Problem:	non-serializable	interleaving
• Concurrent	chains	ordered	inconsistently	at	different	hops

X=1 Y=1

X=2 Y=2

Time

T1

T2

Server-X:	T1	<	T2 Server-Y:	T2	<	T1

Not	serializable!

T2 T1

• Traditional	2PL+2PC	prevents	non-serializable	interleaving	at	
the	cost	of	high	latency

Conflict?

Static	Analysis

• Statically	analyze	all	chains	to	be	executed	
–Web	applications	invoke	fixed	set	of	operations

X=1 Y=1

X=2 Y=2

Serializable	if	no	SC-cycle	[Shasha	et.	al	TODS’95]

A	SC-cycle	has	both	
red	and	blue	edges

T1

T2

How	Lynx	uses	chains

• User	chains:	used	by	programmers	to	implement	
application	logic	

• System	chains:	used	internally	to	maintain	
– Secondary	indexes	

– Materialized	join	views	

– Geo-replicas

Example:	secondary	index

Bob Car $20Alice Book $20

Bob Camera $100Alice iPhone $100

Bidder Item Price

Bids	(base	table)

Alice Camera $100

Bob iPhone $20

Bidder Item Price

Bids	(secondary	index)

Alice Camera $100

Bob Car $20

Example	user	and	system	chain

Alice Book $100

Bob

Datacenter-1 Datacenter-2

Alice

Bob Camera $100

				

bid	on	Bob’s	camera

Alice Camera $100

Insert	to		
Bids	table

Update	
	Items	table

Static	Analysis

Put-bid

Read-bids

Put-bid
Insert	to		
Bids	table

Update	
	Items	table

Read-bids

SC-cycle
One	solution:	execute	chain	as	
a	distributed	transaction

Read			
Bids	table

Read			
Bids	table

Insert	to		
Bids	table

Update	
	Items	table

False	conflicts	in	user	chains	

Put-bid

Insert	to		
Bids	table

Update	
	Items	tablePut-bid

False	conflict	because	
max(bid,	current_price)	

commutes

Insert	to		
Bids	table

Update	
	Items	table

Solution:	users	annotate	commutativity

Put-bid

Insert	to		
Bids	table

Update	
	Items	tablePut-bid

co
m
m
ut
es

System	chains

Insert	to		
Bids	table

…	
Put-bid

Insert	to		
Bids	table

…	
Put-bid

Insert	to		
Bids-secondary

Insert	to		
Bids-secondary

SC-cycle

Solution:	chains	provide	origin-ordering
• Observation:	conflicting	system	chains	originate	at	the	

same	first	hop	server.

Both	write	
the	same	row	
of	Bids	table

• Origin-ordering:	if	chains	T1	<	T2	at	same	first	hop,	then	
T1	<	T2	at	all	subsequent	overlapping	hops.	
– Can	be	implemented	cheaply	! sequence	number	vectors	

T1

Insert	to		
Bids	table

Insert	to		
Bids-secondary

T2

Insert	to		
Bids	table

Insert	to		
Bids-secondary

Limitations	of	Lynx/chains

1. Chains	are	not	strictly	serializable,	only	serializable.	

2. Programmers	can	abort	only	at	first	hop

